Молекулярные механизмы регуляции рецептора тиреотропного гормона – от сигналинга к разработке лекарств

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Рецептор тиреотропного гормона (ТТГ), с которым специфически связываются ТТГ и тиреостимулин, является ключевым компонентом тиреоидной системы, контролирующей широкий спектр жизненно важных процессов в организме человека и позвоночных животных. Этот рецептор структурно близок рецепторам гонадотропинов. Он также имеет значительный по размеру эктодомен с расположенным в нем ортостерическим сайтом для связывания ТТГ, трансмембранный домен, который взаимодействует с гетеротримерными G-белками и β-аррестинами и во внутренней полости которого локализованы аллостерические сайты и способен к образованию функционально активных гомоди(олиго)мерных комплексов. При патологии на внеклеточные участки рецептора ТТГ вырабатываются антитела с различным профилем биологической активности, вызывающие аутоиммунные заболевания щитовидной железы. Эффективность взаимодействия ТТГ с ортостерическим сайтом и избирательность стимуляции определенного внутриклеточного каскада контролируются целым рядом аллостерических механизмов и регуляторов, среди которых статус N-гликозилирования молекул ТТГ, комплексообразование рецептора ТТГ, локализация в его шарнирной петле «внутреннего» агониста, липидный состав мембраны. Настоящий обзор посвящен механизмам ортостерической и аллостерической регуляции активности рецептора ТТГ, их взаимосвязям, а также роли изменений активности рецептора ТТГ в развитии аутоиммунных заболеваний и рака щитовидной железы, офтальмопатии Грейвса, остеопороза. 
В нем также рассмотрены достижения в разработке низкомолекулярных аллостерических регуляторов рецептора ТТГ и перспективы их возможного использования в медицине.

Об авторах

А. О. Шпаков

Федеральное государственное бюджетное учреждение науки Институт эволюционной физиологии и биохимии им. И.М. Сеченова РАН

Email: alex_shpakov@list.ru
заместитель директора, заведующий лабораторией, д.б.н. Санкт-Петербург, 194223

К. В. Деркач

Федеральное государственное бюджетное учреждение науки Институт эволюционной физиологии и биохимии им. И.М. Сеченова РАН

Email: derkatch_k@list.ru
ведущий научный сотрудник, к.б.н. Санкт-Петербург, 194223

Список литературы

  1. Шпаков А.О., Деркач К.В. Множественные механизмы аллостерической регуляции рецептора лютеинизирующего гормона // Успехи физиол. наук. 2024. Т. 53. № 4. C. 45–74. https://doi.org/10.31857/S0301179824040031
  2. Agwuegbo U.T., Colley E., Albert A.P. et al. Differential FSH Glycosylation Modulates FSHR Oligomerization and Subsequent cAMP Signaling // Front. Endocrinol. (Lausanne). 2021. Vol. 12. 765727. https://doi.org/10.3389/fendo.2021.765727
  3. Allen M.D., Neumann S., Gershengorn M.C. Occupancy of both sites on the thyrotropin (TSH) receptor dimer is necessary for phosphoinositide signaling // FASEB J. 2011. Vol. 25. № 10. P. 3687–3694. https://doi.org/10.1096/fj.11-188961
  4. Allen M.D., Neumann S., Gershengorn M.C. Small-molecule thyrotropin receptor agonist activates naturally occurring thyrotropin-insensitive mutants and reveals their distinct cyclic adenosine monophosphate signal persistence // Thyroid. 2011. Vol. 21. № 8. P. 907–912. https://doi.org/10.1089/thy.2011.0025
  5. Ashim J., Seo M.J., Ji S., Heo J., Yu W. Research approaches for exploring the hidden conversations of G protein-coupled receptor transactivation // Mol. Pharmacol. 2025. Vol. 107. № 6. 100043. https://doi.org/10.1016/j.molpha.2025.100043
  6. Bahn R.S. Thyrotropin receptor expression in orbital adipose/connective tissues from patients with thyroid-associated ophthalmopathy // Thyroid. 2002. Vol. 12. № 3. P. 193–195. https://doi.org/10.1089/105072502753600124
  7. Bakhtyukov A.A., Derkach K.V., Fokina E.A. et al. Development of Low-Molecular-Weight Allosteric Agonist of Thyroid-Stimulating Hormone Receptor with Thyroidogenic Activity // Dokl. Biochem. Biophys. 2022. Vol. 503. № 1. P. 67–70. https://doi.org/10.1134/S1607672922020016
  8. Bock A., Bermudez M. Allosteric coupling and biased agonism in G protein-coupled receptors // FEBS J. 2021. V. 288. № 8. P. 2513–2528. https://doi.org/10.1111/febs.15783
  9. Boutin A., Eliseeva E., Gershengorn M.C., Neumann S. β-Arrestin-1 mediates thyrotropin-enhanced osteoblast differentiation // FASEB J. 2014. Vol. 28. № 8. P. 3446–3455. https://doi.org/10.1096/fj.14-251124
  10. Boutin A., Gershengorn M.C., Neumann S. β-Arrestin 1 in Thyrotropin Receptor Signaling in Bone: Studies in Osteoblast-Like Cells // Front. Endocrinol. (Lausanne). 2020. Vol. 11. P. 312. https://doi.org/10.3389/fendo.2020.00312
  11. Boutin A., Krieger C.C., Marcus-Samuels B. et al. TSH Receptor Homodimerization in Regulation of cAMP Production in Human Thyrocytes in vitro // Front. Endocrinol. (Lausanne). 2020. Vol. 11. P. 276. https://doi.org/10.3389/fendo.2020.00276
  12. Bruno R., Ferretti E., Tosi E. et al. Modulation of thyroid-specific gene expression in normal and nodular human thyroid tissues from adults: an in vivo effect of thyrotropin // J. Clin. Endocrinol. Metab. 2005. Vol. 90. № 10. P. 5692–5697. https://doi.org/10.1210/jc.2005-0800
  13. Brüser A., Schulz A., Rothemund S. et al. The Activation Mechanism of Glycoprotein Hormone Receptors with Implications in the Cause and Therapy of Endocrine Diseases // J. Biol. Chem. 2016. Vol. 291. № 2. P. 508–520. https://doi.org/10.1074/jbc.M115.701102
  14. Castro I., Lima L., Seoane R., Lado-Abeal J. Identification and functional characterization of two novel activating thyrotropin receptor mutants in toxic thyroid follicular adenomas // Thyroid. 2009. Vol. 19. № 6. P. 645–649. https://doi.org/10.1089/thy.2009.0002
  15. Chu Y.D., Yeh C.T. The Molecular Function and Clinical Role of Thyroid Stimulating Hormone Receptor in Cancer Cells // Cells. 2020. Vol. 9. № 7. P. 1730. https://doi.org/10.3390/cells9071730
  16. Claeysen S., Govaerts C., Lefort A. et al. A conserved Asn in ТМ7 of the thyrotropin receptor is a common requirement for activation by both mutations and its natural agonist // FEBS Lett. 2002. Vol. 517. № 1–3. P. 195–200. https://doi.org/10.1016/s0014-5793(02)02620-0
  17. Contreras-Jurado C. Thyroid Hormones and Co-workers: An Overview // Methods Mol. Biol. 2025. Vol. 2876. P. 3–16. https://doi.org/10.1007/978-1-0716-4252-8_1
  18. Costagliola S., Panneels V., Bonomi M. et al. Tyrosine sulfation is required for agonist recognition by glycoprotein hormone receptors // EMBO J. 2002. Vol. 21. № 4. P. 504–513. https://doi.org/10.1093/emboj/21.4.504
  19. Couët J., de Bernard S., Loosfelt H. et al. Cell surface protein disulfide-isomerase is involved in the shedding of human thyrotropin receptor ectodomain // Biochemistry. 1996. Vol. 35. № 47. P. 14800–14805. https://doi.org/10.1021/bi961359w
  20. Cui X., Wang F., Liu C. A review of TSHR- and IGF-1R-related pathogenesis and treatment of Graves' orbitopathy // Front. Immunol. 2023. Vol. 14. 1062045. https://doi.org/10.3389/fimmu.2023.1062045
  21. Dardente H., Migaud M. Thyroid hormone and hypothalamic stem cells in seasonal functions // Vitam. Horm. 2021. Vol. 116. P. 91–131. https://doi.org/10.1016/bs.vh.2021.02.005
  22. De Gregorio F., Pellegrino M., Picchietti S. et al. The insecticide 1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane (DDT) alters the membrane raft location of the TSH receptor stably expressed in Chinese hamster ovary cells // Toxicol. Appl. Pharmacol. 2011. Vol. 253. № 2. P. 121–129. https://doi.org/10.1016/j.taap.2011.03.018
  23. Derkach K.V., Bakhtyukov A.A., Sorokoumov V.N. et al. Low Molecular Weight Thyrotropin Receptor Inverse Agonist is Active upon both Intraperitoneal and Oral Administration // J. Evol. Biochem. Physiol. 2024. Vol. 60. № 1. P. 295–305. https://doi.org/10.1134/S0022093024010216
  24. Derkach K.V., Bakhtyukov A.A., Sorokoumov V.N., Shpakov A.O. New Thieno-[2,3-d]pyrimidine-Based Functional Antagonist for the Receptor of Thyroid Stimulating Hormone // Dokl. Biochem. Biophys. 2020. Vol. 491. № 1. P. 77–80. https://doi.org/10.1134/S1607672920020064
  25. Derkach K.V., Didenko E.A., Sorokoumov V.N., Shpakov A.O. Substitution of an Ethyl Group with a Methyl Group in the Variable Moiety of TPY3m, a Thyroid-Stimulating Hormone Receptor Agonist, Modifies the Effect of This Analogue on the Basal and Thyroliberin-Stimulated Levels of Thyroid Hormones in Rats // Cell Tissue Biol. 2025. Vol. 19. № 2. P. 102–112. https://doi.org/10.1134/S1990519X24600716
  26. Derkach K.V., Didenko E.A., Sorokoumov V.N., Zakharova I.O., Shpakov A.O. Low-molecular-weight Ligand of the Thyroid-stimulating Hormone Receptor with the Activity of a Partial Agonist and a Negative Allosteric Modulator // Dokl. Biochem. Biophys. 2025. Vol. 520. № 1. P. 53–57. https://doi.org/10.1134/S1607672924600799
  27. Derkach K.V., Fokina E.A., Bakhtyukov A.A. et al. The Study of Biological Activity of a New Thieno[2,3-D]-Pyrimidine-Based Neutral Antagonist of Thyrotropin Receptor // Bull. Exp. Biol. Med. 2022. Vol. 172. № 6. P. 713–717. https://doi.org/10.1007/s10517-022-05462-x
  28. Derkach K.V., Pechalnova A.S., Nazarov I.R. et al. Development of Thieno[2,3-d]-pyrimidine-based Positive Allosteric Modulators of Thyroid Stimulating Hormone Receptor and their Effect on Thyroid Status in Rats // J. Evol. Biochem. Physiol. 2025. Vol. 61. № 2. P. 425–437. https://doi.org/10.1134/S002209302502005X
  29. Derkach K.V., Pechalnova A.S., Sorokoumov V.N. et al. Effect of a Low-Molecular-Weight Allosteric Agonist of the Thyroid-Stimulating Hormone Receptor on Basal and Thyroliberin-Stimulated Activity of Thyroid System in Diabetic Rats // Int. J. Mol. Sci. 2025. Vol. 26. № 2. P. 703. https://doi.org/10.3390/ijms26020703
  30. Derkach K.V., Sorokoumov V.N., Morina I.Y. et al. Regulatory Effects of 5-Day Oral and Intraperitoneal Administration of a Thienopyrimidine Derivative on the Thyroid Status in Rats // Bull. Exp. Biol. Med. 2024. V. 177. № 4. P. 559–563. https://doi.org/10.1007/s10517-024-06223-8
  31. Draman M.S., Zhang L., Dayan C., Ludgate M. Orbital Signaling in Graves' Orbitopathy // Front. Endocrinol. (Lausanne). 2021. Vol. 12. 739994. https://doi.org/10.3389/fendo.2021.739994
  32. Duan J., Xu P., Cheng X. et al. Structures of full-length glycoprotein hormone receptor signalling complexes // Nature. 2021. Vol. 598. № 7882. P. 688–692. https://doi.org/10.1038/s41586-021-03924-2
  33. Duan J., Xu P., Luan X. et al. Hormone- and antibody-mediated activation of the thyrotropin receptor // Nature. 2022. Vol. 609. № 7928. P. 854–859. https://doi.org/10.1038/s41586-022-05173-3
  34. Ebrhim R.S., Bruellman R.J., Watanabe Y. et al. Central Congenital Hypothyroidism Caused by a Novel Mutation, C47W, in the Cysteine Knot Region of TSHβ // Horm. Res. Paediatr. 2019. Vol. 92. № 6. P. 390–394. https://doi.org/10.1159/000504981
  35. Estrada J.M., Soldin D., Buckey T.M., Burman K.D., Soldin O.P. Thyrotropin isoforms: implications for thyrotropin analysis and clinical practice // Thyroid. 2014. Vol. 24. № 3. P. 411–423. https://doi.org/10.1089/thy.2013.0119.
  36. Evans M., Sanders J., Tagami T. et al. Monoclonal autoantibodies to the TSH receptor, one with stimulating activity and one with blocking activity, obtained from the same blood sample // Clin. Endocrinol. (Oxf.). 2010. Vol. 73. № 3. P. 404–412. https://doi.org/10.1111/j.1365-2265.2010.03831.x
  37. Fan Q.R., Hendrickson W.A. Structural biology of glycoprotein hormones and their receptors // Endocrine. 2005. Vol. 26. № 3. P. 179–188. https://doi.org/10.1385/endo:26:3:179
  38. Faust B., Billesbølle C.B., Suomivuori C.M. et al. Autoantibody mimicry of hormone action at the thyrotropin receptor // Nature. 2022. Vol. 609. № 7928. P. 846–853. https://doi.org/10.1038/s41586-022-05159-1
  39. Feldt-Rasmussen U., Effraimidis G., Klose M. The hypothalamus-pituitary-thyroid (HPT)-axis and its role in physiology and pathophysiology of other hypothalamus-pituitary functions // Mol. Cell. Endocrinol. 2021. Vol. 525. 111173. https://doi.org/10.1016/j.mce.2021.111173
  40. Ferraz C., Paschke R. Inheritable and sporadic non-autoimmune hyperthyroidism // Best Pract. Res. Clin. Endocrinol. Metab. 2017. Vol. 31. № 2. P. 265–275. https://doi.org/10.1016/j.beem.2017.04.005
  41. Fröhlich E., Wahl R. Pars Distalis and Pars Tuberalis Thyroid-Stimulating Hormones and Their Roles in Macro-Thyroid-Stimulating Hormone Formation // Int. J. Mol. Sci. 2023. Vol. 24. № 14. 11699. https://doi.org/10.3390/ijms24141169
  42. Furmaniak J., Sanders J., Núñez Miguel R., Rees Smith B. Mechanisms of Action of TSHR Autoantibodies // Horm. Metab. Res. 2015. Vol. 47. № 10. P. 735–752. https://doi.org/10.1055/s-0035-1559648
  43. Furmaniak J., Sanders J., Sanders P., Li Y., Rees Smith B. TSH receptor specific monoclonal autoantibody K1-70TM targeting of the TSH receptor in subjects with Graves' disease and Graves' orbitopathy-Results from a phase I clinical trial // Clin. Endocrinol. (Oxf.). 2022. Vol. 96. № 6. P. 878–887. https://doi.org/10.1111/cen.14681
  44. Girnita L., Janssen J.A.M.J.L., Smith T.J. G-protein coupled & membrane tyrosine kinase receptors relationship yield therapy opportunities // Endocr. Rev. 2025. bnaf019. https://doi.org/10.1210/endrev/bnaf019
  45. Gluvic Z., Obradovic M., Stewart A.J. et al. Levothyroxine Treatment and the Risk of Cardiac Arrhythmias – Focus on the Patient Submitted to Thyroid Surgery // Front. Endocrinol. (Lausanne). 2021. Vol. 12. 758043. https://doi.org/10.3389/fendo.2021.758043
  46. Godbole A., Lyga S., Lohse M.J., Calebiro D. Internalized TSH receptors en route to the TGN induce local Gs-protein signaling and gene transcription // Nat. Commun. 2017. Vol. 8. № 1. P. 443. https://doi.org/10.1038/s41467-017-00357-2
  47. Grasberger H., Refetoff S. Resistance to thyrotropin // Best Pract. Res. Clin. Endocrinol. Metab. 2017. Vol. 31. № 2. P. 183–194. https://doi.org/10.1016/j.beem.2017.03.004
  48. He X., Duan J., Ji Y. et al. Hinge region mediates signal transmission of luteinizing hormone and chorionic gonadotropin receptor // Comput. Struct. Biotechnol. J. 2022. Vol. 20. P. 6503–6511. https://doi.org/10.1016/j.csbj.2022.11.039
  49. Hoyer I., Haas A.K., Kreuchwig A., Schülein R., Krause G. Molecular sampling of the allosteric binding pocket of the TSH receptor provides discriminative pharmacophores for antagonist and agonists // Biochem. Soc. Trans. 2013. V. 41. № 1. P. 213–217. https://doi.org/10.1042/BST20120319
  50. Hsu S.Y., Nakabayashi K., Bhalla A. Evolution of glycoprotein hormone subunit genes in bilateral metazoa: identification of two novel human glycoprotein hormone subunit family genes, GPA2 and GPB5 // Mol. Endocrinol. 2002. Vol. 16. № 7. P. 1538–1551. https://doi.org/10.1210/mend.16.7.0871
  51. Jang D., Morgan S.J., Klubo-Gwiezdzinska J. et al. Thyrotropin, but Not Thyroid-Stimulating Antibodies, Induces Biphasic Regulation of Gene Expression in Human Thyrocytes // Thyroid. 2020. Vol. 30. № 2. P. 270–276. https://doi.org/10.1089/thy.2019.0418
  52. Jin M., Jang A., Kim C.A. et al. Long-term follow-up result of antithyroid drug treatment of Graves' hyperthyroidism in a large cohort // Eur. Thyroid J. 2023. Vol. 12. № 2. :e220226. https://doi.org/10.1530/ETJ-22-0226
  53. Kleinau G., Haas A.K., Neumann S. et al. Signaling-sensitive amino acids surround the allosteric ligand binding site of the thyrotropin receptor // FASEB J. 2010. Vol. 24. № 7. P. 2347–2354. https://doi.org/10.1096/fj.09-149146
  54. Kleinau G., Worth C.L., Kreuchwig A. et al. Structural-Functional Features of the Thyrotropin Receptor: A Class A G-Protein-Coupled Receptor at Work // Front. Endocrinol. (Lausanne). 2017. Vol. 8. P. 86. https://doi.org/10.3389/fendo.2017.00086
  55. Krause G., Eckstein A., Schülein R. Modulating TSH Receptor Signaling for Therapeutic Benefit // Eur. Thyroid J. 2020. Vol. 9. Suppl. 1. P. 66–77. https://doi.org/10.1159/000511871
  56. Krause G., Kreuchwig A., Kleinau G. Extended and structurally supported insights into extracellular hormone binding, signal transduction and organization of the thyrotropin receptor // PLoS One. 2012. Vol. 7. № 12. e52920. https://doi.org/10.1371/journal.pone.0052920
  57. Krause G., Marcinkowski P. Intervention Strategies into Glycoprotein Hormone Receptors for Modulating (Mal-)function, with Special Emphasis on the TSH Receptor // Horm. Metab. Res. 2018. Vol. 50. № 12. P. 894–907. https://doi.org/10.1055/a-0749-6528
  58. Kreuchwig A., Kleinau G., Krause G. Research resource: novel structural insights bridge gaps in glycoprotein hormone receptor analyses // Mol. Endocrinol. 2013. Vol. 27. № 8. P. 1357–1363. https://doi.org/10.1210/me.2013-1115
  59. Krieger C.C., Neumann S., Gershengorn M.C. Is There Evidence for IGF1R-Stimulating Abs in Graves' Orbitopathy Pathogenesis? // Int. J. Mol. Sci. 2020. Vol. 21. № 18. 6561. https://doi.org/10.3390/ijms21186561
  60. Kushnir J., Gumpper R.H. Molecular Glues: A New Approach to Modulating GPCR Signaling Bias // Biochemistry. 2025. Vol. 64. № 4. P. 749–759. https://doi.org/10.1021/acs.biochem.4c00734
  61. Lanzolla G., Marinò M., Menconi F. Graves disease: latest understanding of pathogenesis and treatment options // Nat. Rev. Endocrinol. 2024. Vol. 20. № 11. P. 647–660. https://doi.org/10.1038/s41574-024-01016-5
  62. Latif R., Ali M.R., Ma R. et al. New small molecule agonists to the thyrotropin receptor // Thyroid. 2015. Vol. 25. № 1. P. 51–62. https://doi.org/10.1089/thy.2014.0119
  63. Latif R., Mezei M., Davies T.F. Mechanisms in Thyroid Eye Disease: The TSH Receptor Interacts Directly With the IGF-1 Receptor // Endocrinology. 2025. Vol. 166. № 2. bqaf009. https://doi.org/10.1210/endocr/bqaf009
  64. Latif R., Morshed S.A., Ma R. et al. A Gq Biased Small Molecule Active at the TSH Receptor // Front. Endocrinol. (Lausanne). 2020. Vol. 11. P. 372. https://doi.org/10.3389/fendo.2020.00372
  65. Laugwitz K.L., Allgeier A., Offermanns S. et al. The human thyrotropin receptor: a heptahelical receptor capable of stimulating members of all four G protein families // Proc. Natl. Acad. Sci. U S A. 1996. Vol. 93. № 1. P. 116–120. https://doi.org/10.1073/pnas.93.1.116
  66. Lazim R., Suh D., Lee J.W. et al. Structural Characterization of Receptor-Receptor Interactions in the Allosteric Modulation of G Protein-Coupled Receptor (GPCR) Dimers // Int. J. Mol. Sci. 2021. Vol. 22. № 6. 3241. https://doi.org/10.3390/ijms22063241
  67. Lazzaretti C., Paradiso E., Sperduti S. et al. Trafficking of luteinizing hormone receptor directs the differential signal activation between luteinizing hormone and chorionic gonadotropin // Int. J. Biol. Macromol. 2025. Vol. 318. Pt. 3. 145247. https://doi.org/10.1016/j.ijbiomac.2025.145247
  68. Lin H.H. An Alternative Mode of GPCR Transactivation: Activation of GPCRs by Adhesion GPCRs // Int. J. Mol. Sci. 2025. Vol. 26. № 2. P. 552. https://doi.org/10.3390/ijms26020552
  69. Madsen J.J., Ye L., Frimurer T.M., Olsen O.H. Mechanistic basis of GPCR activation explored by ensemble refinement of crystallographic structures // Protein Sci. 2022. Vol. 31. № 11. e4456. https://doi.org/10.1002/pro.4456
  70. Marcinkowski P., Hoyer I., Specker E. et al. A New Highly Thyrotropin Receptor-Selective Small-Molecule Antagonist with Potential for the Treatment of Graves' Orbitopathy // Thyroid. 2019. Vol. 29. № 1. P. 111–123. https://doi.org/10.1089/thy.2018.0349
  71. Mendonça-Reis E., Guimarães-Nobre C.C., Teixeira-Alves L.R., Miranda-Alves L., Berto-Junior C. TSH Receptor Reduces Hemoglobin S Polymerization and Increases Deformability and Adhesion of Sickle Erythrocytes // Anemia. 2024. Vol. 2024. 7924015. https://doi.org/10.1155/2024/7924015
  72. Mezei M., Latif R., Davies T.F. Modeling TSH Receptor Dimerization at the Transmembrane Domain // Endocrinology. 2022. Vol. 163. № 12. bqac168. https://doi.org/10.1210/endocr/bqac168
  73. Michalek K., Morshed S.A., Latif R., Davies T.F. TSH receptor autoantibodies // Autoimmun. Rev. 2009. Vol. 9. № 2. P. 113–116. https://doi.org/10.1016/j.autrev.2009.03.012
  74. Mirchandani-Duque M., Choucri M., Hernández-Mondragón J.C. et al. Membrane Heteroreceptor Complexes as Second-Order Protein Modulators: A Novel Integrative Mechanism through Allosteric Receptor-Receptor Interactions // Membranes (Basel). 2024. Vol. 14. № 5. P. 96. https://doi.org/10.3390/membranes14050096
  75. Morshed S.A., Davies T.F. Graves' Disease Mechanisms: The Role of Stimulating, Blocking, and Cleavage Region TSH Receptor Antibodies // Horm. Metab. Res. 2015. Vol. 47. № 10. P. 727–734. https://doi.org/10.1055/s-0035-1559633
  76. Mueller S., Kleinau G., Szkudlinski M.W. et al. The superagonistic activity of bovine thyroid-stimulating hormone (TSH) and the human TR1401 TSH analog is determined by specific amino acids in the hinge region of the human TSH receptor // J. Biol. Chem. 2009. Vol. 284. № 24. P. 16317–16324. https://doi.org/10.1074/jbc.M109.005710
  77. Nagayama Y., Nishihara E. Thyrotropin receptor antagonists and inverse agonists, and their potential application to thyroid diseases // Endocr. J. 2022. Vol. 69. № 11. P. 1285–1293. https://doi.org/10.1507/endocrj.EJ22-0391
  78. Neumann S., Eliseeva E., Boutin A. et al. Discovery of a Positive Allosteric Modulator of the Thyrotropin Receptor: Potentiation of Thyrotropin-Mediated Preosteoblast Differentiation In Vitro // J. Pharmacol. Exp. Ther. 2018. V. 364. № 1. P. 38–45. https://doi.org/10.1124/jpet.117.244095
  79. Neumann S., Eliseeva E., McCoy J.G. et al. A new small-molecule antagonist inhibits Graves' disease antibody activation of the TSH receptor // J. Clin. Endocrinol. Metab. 2011. Vol. 96. № 2. P. 548–554. https://doi.org/10.1210/jc.2010-1935
  80. Neumann S., Huang W., Eliseeva E. et al. A small molecule inverse agonist for the human thyroid-stimulating hormone receptor // Endocrinology. 2010. Vol. 151. № 7. P. 3454–3459. https://doi.org/10.1210/en.2010-0199
  81. Neumann S., Huang W., Titus S. et al. Small-molecule agonists for the thyrotropin receptor stimulate thyroid function in human thyrocytes and mice // Proc. Natl. Acad. Sci. U S A. 2009. Vol. 106. № 30. P. 12471–12476. https://doi.org/10.1073/pnas.0904506106
  82. Neumann S., Kleinau G., Costanzi S. et al. A low-molecular-weight antagonist for the human thyrotropin receptor with therapeutic potential for hyperthyroidism // Endocrinology. 2008. Vol. 149. № 12. P. 5945–5950. https://doi.org/10.1210/en.2008-0836
  83. Neumann S., Malik S.S., Marcus-Samuels B. et al. Thyrotropin Causes Dose-dependent Biphasic Regulation of cAMP Production Mediated by Gs and Gi/o Proteins // Mol. Pharmacol. 2020. Vol. 97. № 1. P. 2–8. https://doi.org/10.1124/mol.119.117382
  84. Neumann S., Nir E.A., Eliseeva E. et al. A selective TSH receptor antagonist inhibits stimulation of thyroid function in female mice // Endocrinology. 2014. Vol. 155. № 1. P. 310–314. https://doi.org/10.1210/en.2013-1835
  85. Noh J.Y., Watanabe N., Ito K. et al. Safety, pharmacokinetics, and potential benefits of TSH-receptor-specific monoclonal autoantibody K1-70TM in Japanese Graves' disease patients: results of a phase 1 trial // Endocr. J. 2025. https://doi.org/10.1507/endocrj.EJ25-0043
  86. Núñez Miguel R., Sanders P., Allen L. et al. Structure of full-length TSH receptor in complex with antibody K1-70™ // J. Mol. Endocrinol. 2022. Vol. 70. № 1. e220120. https://doi.org/10.1530/JME-22-0120
  87. Núñez Miguel R., Sanders J., Chirgadze D.Y., Furmaniak J., Rees Smith B. Thyroid stimulating autoantibody M22 mimics TSH binding to the TSH receptor leucine rich domain: a comparative structural study of protein-protein interactions // J. Mol. Endocrinol. 2009. Vol. 42. № 5. P. 381–395. https://doi.org/10.1677/JME-08-0152
  88. Ortiga-Carvalho T.M., Chiamolera M.I., Pazos-Moura C.C., Wondisford F.E. Hypothalamus-Pituitary-Thyroid Axis // Compr. Physiol. 2016. Vol. 6. № 3. P. 1387–1428. https://doi.org/10.1002/cphy.c150027
  89. Parent E.E., Gleba J.J., Knight J.A. et al. Zirconium- 89 Labeled Antibody K1-70 for PET Imaging of Thyroid-stimulating Hormone Receptor Expression in Thyroid Cancer // Mol. Imaging Biol. 2024. Vol. 26. № 5. P. 847–857. https://doi.org/10.1007/s11307-024-01945-7
  90. Parra-Montes de Oca M.A., Sotelo-Rivera I., Gutiérrez-Mata A., Charli J.L., Joseph-Bravo P. Sex Dimorphic Responses of the Hypothalamus-Pituitary-Thyroid Axis to Energy Demands and Stress // Front. Endocrinol. (Lausanne). 2021. Vol. 12. 746924. https://doi.org/10.3389/fendo.2021.746924
  91. Postiglione M.P., Parlato R., Rodriguez-Mallon A. et al. Role of the thyroid-stimulating hormone receptor signaling in development and differentiation of the thyroid gland // Proc. Natl. Acad. Sci. U S A. 2002. Vol. 99. № 24. P. 15462–15467. https://doi.org/10.1073/pnas.242328999
  92. Prummel M.F., Brokken L.J., Meduri G. et al. Expression of the thyroid-stimulating hormone receptor in the folliculo-stellate cells of the human anterior pituitary // J. Clin. Endocrinol. Metab. 2000. Vol. 85. № 11. P. 4347–4353. https://doi.org/10.1210/jcem.85.11.6991
  93. Prummel M.F., Brokken L.J., Wiersinga W.M. Ultra short-loop feedback control of thyrotropin secretion // Thyroid. 2004. Vol. 14. № 10. P. 825–829. https://doi.org/10.1089/thy.2004.14.825
  94. Querat B. Unconventional Actions of Glycoprotein Hormone Subunits: A Comprehensive Review // Front. Endocrinol. (Lausanne). 2021. Vol. 12. 731966. https://doi.org/10.3389/fendo.2021.731966
  95. Rapoport B., McLachlan S.M. The thyrotropin receptor in Graves' disease // Thyroid. 2007. Vol. 17. № 10. P. 911–922. https://doi.org/10.1089/thy.2007.0170
  96. Ray A.P., Thakur N., Pour N.G., Eddy M.T. Dual mechanisms of cholesterol-GPCR interactions that depend on membrane phospholipid composition // Structure. 2023. Vol. 31. № 7. P. 836–847.e6. https://doi.org/10.1016/j.str.2023.05.001
  97. Rossi L., Paternoster M., Cammarata M., Bakkar S., Miccoli P. Levothyroxine therapy in thyroidectomized patients: ongoing challenges and controversies // Front. Endocrinol. (Lausanne). 2025. Vol. 16. 1582734. https://doi.org/10.3389/fendo.2025.1582734
  98. Sanders P., Young S., Sanders J. et al. Crystal structure of the TSH receptor (TSHR) bound to a blocking-type TSHR autoantibody // J. Mol. Endocrinol. 2011. Vol. 46. № 2. P. 81–99. https://doi.org/10.1530/JME-10-0127
  99. Sarkar R., Bolel P., Kapoor A. et al. An Orally Efficacious Thyrotropin Receptor Ligand Inhibits Growth and Metastatic Activity of Thyroid Cancers // J. Clin. Endocrinol. Metab. 2024. Vol. 109. № 9. P. 2306–2316. https://doi.org/10.1210/clinem/dgae114
  100. Schaarschmidt J., Nagel M.B.M., Huth S. et al. Rearrangement of the Extracellular Domain/Extracellular Loop 1 Interface Is Critical for Thyrotropin Receptor Activation // J. Biol. Chem. 2016. Vol. 291. № 27. P. 14095–14108. https://doi.org/10.1074/jbc.M115.709659
  101. Schulze A., Kleinau G., Neumann S. et al. The intramolecular agonist is obligate for activation of glycoprotein hormone receptors // FASEB J. 2020. Vol. 34. № 8. P. 11243–11256. https://doi.org/10.1096/fj.202000100R
  102. Shpakov A.O. Allosteric Regulation of G-Protein-Coupled Receptors: From Diversity of Molecular Mechanisms to Multiple Allosteric Sites and Their Ligands // Int. J. Mol. Sci. 2023. Vol. 24. № 7. 6187. https://doi.org/10.3390/ijms24076187
  103. Shpakov A.O. Hormonal and Allosteric Regulation of the Luteinizing Hormone/Chorionic Gonadotropin Receptor // Front. Biosci. (Landmark Ed). 2024. Vol. 29. № 9. P. 313. https://doi.org/10.31083/j.fbl2909313
  104. Smith B.R. Autoantibodies to the TSH Receptor-from discovery to understanding the mechanisms of action and to new therapeutics // Endocr. J. 2025. https://doi.org/10.1507/endocrj.EJ25-0127
  105. Stephenson A., Lau L., Eszlinger M., Paschke R. The Thyrotropin Receptor Mutation Database Update // Thyroid. 2020. Vol. 30. № 6. P. 931–935. https://doi.org/10.1089/thy.2019.0807
  106. Szymańska K., Kałafut J., Przybyszewska A. et al. FSHR Trans-Activation and Oligomerization // Front. Endocrinol. (Lausanne). 2018. Vol. 9. P. 760. https://doi.org/10.3389/fendo.2018.00760
  107. Taylor P.N., Albrecht D., Scholz A. et al. Global epidemiology of hyperthyroidism and hypothyroidism // Nat. Rev. Endocrinol. 2018. Vol. 14. № 5. P. 301–316. https://doi.org/10.1038/nrendo.2018.18
  108. Trubacova R., Drastichova Z., Novotny J. Biochemical and physiological insights into TRH receptor-mediated signaling // Front. Cell. Dev. Biol. 2022. Vol. 10. 981452. https://doi.org/10.3389/fcell.2022.981452
  109. Tuncel M. Thyroid Stimulating Hormone Receptor // Mol. Imaging Radionucl. Ther. 2017. Vol. 26. Suppl. 1. P. 87–91. https://doi.org/10.4274/2017.26.suppl.10
  110. Turcu A.F., Kumar S., Neumann S. et al. A small molecule antagonist inhibits thyrotropin receptor antibody-induced orbital fibroblast functions involved in the pathogenesis of Graves ophthalmopathy // J. Clin. Endocrinol. Metab. 2013. Vol. 98. № 5. P. 2153–2159. https://doi.org/10.1210/jc.2013-1149
  111. Urizar E., Montanelli L., Loy T. et al. Glycoprotein hormone receptors: link between receptor homodimerization and negative cooperativity // EMBO J. 2005. Vol. 24. № 11. P. 1954–1964. https://doi.org/10.1038/sj.emboj.7600686
  112. Vassart G., Dumont J.E. The thyrotropin receptor and the regulation of thyrocyte function and growth // Endocr. Rev. 1992. Vol. 13. № 3. P. 596–611. https://doi.org/10.1210/edrv-13-3-596
  113. Vieira I.H., Rodrigues D., Paiva I. The Mysterious Universe of the TSH Receptor // Front. Endocrinol. (Lausanne). 2022. Vol. 13. 944715. https://doi.org/10.3389/fendo.2022.944715
  114. Von Gall C., Weaver D.R., Moek J. et al. Melatonin plays a crucial role in the regulation of rhythmic clock gene expression in the mouse pars tuberalis // Ann. N. Y. Acad. Sci. 2005. Vol. 1040. P. 508–511. https://doi.org/10.1196/annals.1327.105
  115. Wide L., Eriksson K. Thyrotropin N-glycosylation and Glycan Composition in Severe Primary Hypothyroidism // J. Endocr. Soc. 2021. Vol. 5. № 4. bvab006. https://doi.org/10.1210/jendso/bvab006
  116. Wondisford F.E. The thyroid axis just got more complicated // J. Clin. Invest. 2002. Vol. 109. № 11. P. 1401–1402. https://doi.org/10.1172/JCI15865
  117. Xiang P., Latif R., Morshed S., Davies T.F. Hypothyroidism Induced by a TSH Receptor Peptide-Implications for Thyroid Autoimmunity // Thyroid. 2024. Vol. 34. № 12. P. 1513–1521. https://doi.org/10.1089/thy.2024.0089
  118. Xiang T., Zhang S., Li Q. et al. GPHB5 Is a Biomarker in Women With Metabolic Syndrome: Results From Cross-Sectional and Intervention Studies // Front. Endocrinol. (Lausanne). 2022. Vol. 13. 893142. https://doi.org/10.3389/fendo.2022.893142
  119. Xu S., Peng Y., Li X. et al. TSHR in thyroid cancer: bridging biological insights to targeted strategies // Eur. Thyroid J. 2025. Vol. 14. № 4. e240369. https://doi.org/10.1530/ETJ-24-0369
  120. Yang Q., Li J., Kou C. et al. Presence of TSHR in NK Cells and Action of TSH on NK Cells // Neuroimmunomodulation. 2022. Vol. 29. № 1. P. 77–84. https://doi.org/10.1159/000516925
  121. Yeste D., Baz-Redón N., Antolín M. et al. Genetic and Functional Studies of Patients with Thyroid Dyshormonogenesis and Defects in the TSH Receptor (TSHR) // Int. J. Mol. Sci. 2024. Vol. 25. № 18. 10032. https://doi.org/10.3390/ijms251810032
  122. Ząbczyńska M., Kozłowska K., Pocheć E. Glycosylation in the Thyroid Gland: Vital Aspects of Glycoprotein Function in Thyrocyte Physiology and Thyroid Disorders // Int. J. Mol. Sci. 2018. Vol. 19. № 9. 2792. https://doi.org/10.3390/ijms19092792
  123. Zhang Y., Tan Y., Zhang Z. et al. Targeting Thyroid-Stimulating Hormone Receptor: A Perspective on Small-Molecule Modulators and Their Therapeutic Potential // J. Med. Chem. 2024. Vol. 67. № 18. P. 16018–16034. https://doi.org/10.1021/acs.jmedchem.4c01525
  124. Zoenen M., Urizar E., Swillens S., Vassart G., Costagliola S. Evidence for activity-regulated hormone-binding cooperativity across glycoprotein hormone receptor homomers // Nat. Commun. 2012. Vol. 3. 1007. https://doi.org/10.1038/ncomms1991

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).