Perivascular Adipose Tissue: Role in Regulation of Vascular Tone at Normal Phisiological States and Obesity

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Perivascular adipose tissue (PVAT) surrounds most mammalian blood vessels, it may be considered as the 4th layer of the vessel wall due to existence of the close contact with the adventitia. The unique location of the PVAT determines the great significance of the paracrine influences of the factors secreted by it, many of which are vasoactive modulators (adipokines, angiotensins, gasotransmitters, cytokines). Under physiological conditions, the secretion of these substances causes a pronounced anticontractile effect on vascular smooth muscles, and the existence of mutual influences between PVAT and the vascular wall allows for fine regulation of vascular tone for adequate blood supply to organs and tissues in accordance with their metabolic needs. Dysfunctional changes occurring in adipose tissue during obesity lead to changes in the expression and secretion of substances, and the protective effect of PVAT on vascular tone is transformed to a procontractile effect, enhancing vascular reactivity to the action of vasoconstrictor agents and leading to an increase in arterial pressure. The objective of the review is to present the current state of research regarding the specific functioning of the PVAT, its influence on vascular tone through secreted substances both in normal conditions and under dysfunction caused by obesity. Special emphasis is placed on paracrine effects, studying which serves as a prerequisite for future development of therapies aimed at treating vascular disorders targeting the PVAT.

Sobre autores

M. Pankova

Pavlov Institute of Physiology of the Russian Academy of Sciences

Email: mpankova@bk.ru
St. Petersburg, 199034 Russia

G. Lobov

Pavlov Institute of Physiology of the Russian Academy of Sciences

Email: LobovGI@infran.ru
St. Petersburg, 199034 Russia

Bibliografia

  1. Александрова Н.П. Ожирение как основной фактор влияния метаболического синдрома на функцию внешнего дыхания // Успехи физиол. наук. 2024. Т. 55. № 4. С. 113–124. https://doi.org/ 10.31857/S030117982404006
  2. Лобов Г.И. Сократительная функция брыжеечных лимфатических узлов крыс при ожирении // Вопросы питания. 2024. Т. 93. № 4 (554). С. 39–48. https://doi.org/10.33029/0042-8833-2024-93-4-39-48
  3. Панькова М.Н. Дисфункциональные изменения брыжеечных артерий в ранние сроки ожирения крыс при высокожировой диете // Ожирение и метаболизм. 2022. Т. 19. № 2. С. 158–165. https://doi.org/10.14341/omet12842
  4. Панькова М.Н. Эндотелий-независимое антисократительное влияние периваскулярной жировой ткани аорты крысы в норме и при метаболических нарушениях, индуцированных диетой кафе // Росс. физиологический журнал им. И.М. Сеченова. 2023. Т. 109. № 12. С. 1870–1872. https://doi.org/10.31857/S0869813923120075
  5. Панькова М.Н. Возврат к стандартному питанию после высококалорийной диеты улучшает метаболические показатели и реактивность аорты крысы // Ожирение и метаболизм. 2024. Т. 21. № 4. С. 416–423. https://doi.org/10.14341/omet13105
  6. Подзолков В.И., Брагина А.Е., Осадчий К.К. и др. Эктопическое ожирение у пациентов без клинически значимых сердечно-сосудистых заболеваний: ориентировочные нормативы, частота и клинические характеристики // Терапевтический архив. 2022. Т. 94. № 9. С. 1072–1077. https://doi.org/10.26442/00403660.2022.09.201847. – EDN JJMRAU.
  7. Achari A.E., Jain S.K. Adiponectin, a Therapeutic Target for Obesity, Diabetes, and Endothelial Dysfunction // Int. J. Mol. Sci. 2017. V. 18. № 6. Р. 1321. https://doi.org/10.3390/ijms18061321
  8. Aghamohammadzadeh R., Greenstein A.S., Yadav R. et al. Effects of bariatric surgery on human small artery function: Evidence for reduction in perivascular adipocyte inflammation, and the restoration of normal anticontractile activity despite persistent obesity // J. Am. Coll.Cardiol. 2013. V. 62. № 2. P. 128–135. https://doi.org/ 10.1016/j.jacc.2013.04.027
  9. Akcabag E., Bayram Z., Kucukcetin I.O. et al. Functional effects of visfatin in isolated rat mesenteric small resistance arteries // Eur. J. Pharmacol. 2021. V. 908. P. 174333 https://doi.org/10.1016/j.ejphar.2021.174333
  10. Akoumianakis I., Antoniades C. The interplay between adipose tissue and the cardiovascular system: Is fat always bad? // Cardiovasc. Res. 2017. V. 113. № 9. P. 999–1008. https://doi.org/10.1093/cvr/cvx111.
  11. Antoniades C., Tousoulis D., Vavlukis M. et al. Perivascular adipose tissue as a source of therapeutic targets and clinical biomarkers // European heart journal. 2023. V. 44. № 38. P. 3827–3844. https://doi.org/10.1093/eurheartj/ehad484
  12. Antonopoulos A.S., Sanna F., Sabharwal N. et al. Detecting human coronary inflammation by imaging perivascular fat // Sci. Transl. Med. 2017. V. 9. № 398. P. eaal2658. https://doi.org/10.1126/scitranslmed.aal2658
  13. Atawia R.T., Faulkner J.L., Mehta V. et al. Endothelial leptin receptor is dispensable for leptin-induced sympatho-activation and hypertension in male mice // Vascul. Pharmacol. 2022. V. 146. P. 107093. https://doi.org/10.1016/j.vph.2022.107093.
  14. Banerjee R., Chiku T., Kabil O. et al. Assay methods for H2S biogenesis and catabolism enzymes // Methods Enzymol. 2015. V. 554. P. 189–200. https://doi.org/ 10.1016/bs.mie.2014.11.016
  15. Barp C.G., Bonaventura D., Assreuy J. NO, ROS, RAS, and PVAT: More Than a Soup of Letters // Front. Physiol. 2021. V. 12. P. 640021. https://doi.org/10.3389/fphys.2021.640021
  16. Bartness T.J., Vaughan C.H., Song C.K. Sympathetic and sensory innervation of brown adipose tissue // Int. J. Obes. (Lond). 2010. V. 34. Suppl 1(01). P. S36–42. https://doi.org/10.1038/ijo.2010.182.
  17. Baylie R., Ahmed M., Bonev A.D. et al. Lack of direct effect of adiponectin on vascular smooth muscle cell BKCa channels or Ca2+ signaling in the regulation of small artery pressure-induced constriction // Physiol. Rep. 2017. V. 5. № 16. P. e13337. https://doi.org/10.14814/phy2.13337
  18. Bayram Z., Akcabag E., Ozbey G. et al. The Functional Effects of Visfatin on Human Left Internal Mammary Artery // J. Cardiovasc. Pharmacol. 2022. № 80. № 5. P. 725–731. https://doi.org/10.1097/FJC.0000000000001327.
  19. Bharadwaj L.A., Prasad K. Mechanism of superoxide anion-induced modulation of vascular tone // Int. J. Angiol. 2002. V. 11. P. 23–29. https://doi.org/10.1007/s00547-001-0049-5.
  20. Blüher M. Metabolically Healthy Obesity // Endocr. Rev. 2020. V. 41. № 3. P. bnaa004. https://doi.org/10.1210/endrev/bnaa004
  21. Bolić B., Mijušković A., Popović-Bijelić A. et al. Reactions of superoxide dismutases with HS(-)/H2S and superoxide radical anion: An in vitro EPR study // Nitric Oxide. 2015. V. 51. P. 19–23. https://doi.org/10.1016/j.niox.2015.09.008
  22. Brown N.K., Zhou Z., Zhang J. et al. Perivascular adipose tissue in vascular function and disease: Areview of current research and animal models // Arterioscler. Thromb. Vasc. Biol. 2014. V. 34. № 8. P. 1621–30. https://doi.org/10.1161/ATVBAHA.114.303029
  23. Burgoyne J.R., Madhani M., Cuello F. et al. Cysteine redox sensor in PKGIa enables oxidant-induced activation // Science. 2007. V. 317. № 5843. P. 1393–1397. https://doi.org/10.1126/science.1144318
  24. Bussey C.E., Withers S.B., Saxton S.N. et al. β3-Adrenoceptor stimulation of perivascular adipocytes leads to increased fat cell-derived NO and vascular relaxation in small arteries // Br. J. Pharmacol. 2018. V. 175. № 18. P. 3685–3698. https://doi.org/10.1111/bph.14433
  25. Cacanyiova S., Golas S., Zemancikova A. et al. The Vasoactive Role of Perivascular Adipose Tissue and the Sulfide Signaling Pathway in a Nonobese Model of Metabolic Syndrome // Biomolecules. 2021. V. 11. № 1. P. 108. https://doi.org/10.3390/biom11010108
  26. Ceron C.S., Luizon M.R., Palei A.C. The Potential Role of Visfatin in Mediating Vascular Dysfunction and Hypertension // J. Cardiovasc. Pharmacol. 2023. V. 82. № 5. Р. 347–349. https://doi.org/10.1097/FJC.0000000000001457
  27. Chait A., den Hartigh L.J. Adipose Tissue Distribution, Inflammation and Its Metabolic Consequences, Including Diabetes and Cardiovascular Disease // Front. Cardiovasc. Med. 2020. V. 7. Р. 22. https://doi.org/10.3389/fcvm.2020.00022
  28. Chang L., Villacorta L., Li R. et al. Loss of perivascular adipose tissue on peroxisome proliferator-activated receptor-γ deletion in smooth muscle cells impairs intravascular thermoregulation and enhances atherosclerosis // Circulation. 2012. V. 126. № 9. Р. 1067–1078. https://doi.org/10.1161/CIRCULATIONAHA.112.104489
  29. Chang Y.H., Chang D.M., Lin K.C. et al. Visfatin in overweight/obesity, type 2 diabetes mellitus, insulin resistance, metabolic syndrome and cardiovascular diseases: A meta-analysis and systemic review // Diabetes/metabolism research and reviews. 2011. V. 27. № 6. Р. 515–527. https://doi.org/10.1002/dmrr.1201
  30. Chatterjee T.K., Stoll L.L., Denning G.M. et al. Proinflammatory phenotype of perivascular adipocytes: Influence of high-fat feeding // Circulation research. 2009. V. 104. № 4. Р. 541–549. https://doi.org/10.1161/CIRCRESAHA.108.182998.
  31. Chen H.H., Tseng Y.J., Wang S.Y. et al. The metabolome profiling and pathway analysis in metabolic healthy and abnormal obesity // Int. J. Obes. (Lond). 2015. V. 39. № 8. Р. 1241–1248. https://doi.org/10.1038/ijo.2015.65
  32. Cheng C.K., Bakar H.A., Gollasch M., Huang Y. Perivascular adipose tissue: The sixth man of the cardiovascular system // Cardiovasc. Drugs Ther. 2018. V. 32. Р. 481–502. https://doi.org/10.1007/S10557-018-6820-Z
  33. Cinti S. The adipose organ // Prostaglandins Leukot. Essent. Fatty Acids. 2005. V. 73. № 1. Р. 9–15. https://doi.org/10.1016/j.plefa.2005.04.010
  34. Contreras G.A., Thelen K., Ayala-Lopez N., Wat- ts S.W. The distribution and adipogenic potential of perivascular adipose tissue adipocyte progenitors is dependent on sexual dimorphism and vessel location // Physiological reports. 2016. V. 4. № 19. Р. e12993. https://doi.org/10.14814/phy2.12993
  35. Costa R.M., Filgueira F.P., Tostes R.C. et al. H2O2 generated from mitochondrial electron transport chain in thoracic perivascular adipose tissue is crucial for modulation of vascular smooth muscle contraction // Vascul. Pharmacol. 2016. V. 84. Р. 28–37. https://doi.org/10.1016/j.vph.2016.05.008.
  36. Denizalti M., Bozkurt T.E., Akpulat U. et al. The vasorelaxant effect of hydrogen sulfide is enhanced in streptozotocin-induced diabetic rats // Naunyn Schmiedebergs Arch. Pharmacol. 2011. V. 383. № 5. Р. 509–517. https://doi.org/10.1007/s00210-011-0601-6
  37. Dessie G., Ayelign B., Akalu Y., Shibabaw T., MollaM.D. Effect of Leptin on Chronic Inflammatory Disorders: Insights to Therapeutic Target to Prevent Further Cardiovascular Complication // Diabetes, metabolic syndrome and obesity: targets and therapy. 2021. V. 14. Р. 3307–3322. https://doi.org/10.2147/DMSO.S321311
  38. Dos Reis Costa D.E.F., Silveira A.L.M., Cam- pos G.P. et al. High-Carbohydrate Diet Enhanced the Anticontractile Effect of Perivascular Adipose Tissue Through Activation of Renin-Angiotensin System // Front. Physiol. 2021. V. 11. Р. 628101. https://doi.org/10.3389/fphys.2020.628101.
  39. Efremova A., Senzacqua M., Venema W. et al. A large proportion of mediastinal and perirenal visceral fat of Siberian adult people is formed by UCP1 immunoreactive multilocular and paucilocular adipocytes // J. Physiol. Biochem. 2020. V. 76. № 2. Р. 185–192. https://doi.org/10.1007/s13105-019-00721-4.
  40. Emont M.P., Jacobs C., Essene A.L. et al. A single-cell atlas of human and mouse white adipose tis- sue // Nature. 2022. V. 603. № 7903. Р. 926–933. https://doi.org/10.1038/s41586-022-04518-2
  41. Fang L., Zhao J., Chen Y. et al. Hydrogen sulfide derived from periadventitial adipose tissue is a vasodilator // J. Hypertens. 2009. V. 27. № 11. Р. 2174–2185. https://doi.org/10.1097/HJH.0b013e328330a900
  42. Farr O.M., Gavrieli A., Mantzoros C.S. Leptin applications in 2015: what have we learned about leptin and obesity? // Curr. Opin. Endocrinol. Diabetes Obes. 2015. V. 22. № 5. Р. 353–359. https://doi.org/10.1097/MED.0000000000000184.
  43. Fésüs G., Dubrovska G., Gorzelniak K. et al. Adiponectin is a novel humoral vasodilator // Cardiovasc Res. 2007. V. 75. № 4. Р. 719–727. https://doi.org/10.1016/j.cardiores.2007.05.025
  44. Formentini L., Moroni F., Chiarugi A. Detection and pharmacological modulation of nicotinamide mononucleotide (NMN) in vitro and in vivo // Biochem. Pharmacol. 2009. V. 77. Р. 1612–1620.https://doi.org/10.1016/j.bcp.2009.02.017
  45. Fortuño A., Rodríguez A., Gómez-Ambrosi J. et al. Leptin inhibits angiotensin II-indu-ced intracellular calcium increase and vasoconstriction in the rat aorta // Endocrinology. 2002. V. 143. № 9. Р. 3555–3560. https://doi.org/10.1210/en.2002-220075.
  46. Furukawa S., Fujita T., Shimabukuro M. et al. Increased oxidative stress in obesity and its impact on metabolic syndrome // The Journal of clinical investigation. 2004. V. 114. № 12. Р. 1752–1761. https://doi.org/10.1172/JCI21625.
  47. Gálvez-Prieto B., Bolbrinker J., Stucchi P. et al. Comparative expression analysis of the renin-angiotensin system components between white and brown perivascular adipose tissue // J. Endocrinol. 2008. V. 197. № 1. Р. 55–64. https://doi.org/10.1677/JOE-07-0284
  48. Gao Y.J., Lu C., Su L.Y. et al. Modulation of vascular function by perivascular adipose tissue: The role of endothelium and hydrogen peroxide // Br. J. Pharmacol. 2007. V. 151. Р. 323–331. https://doi.org/10.1038/sj.bjp.0707228.
  49. Gao Y.J., Takemori K., Su L.Y. et al. Perivascular adipose tissue promotes vasoconstriction: the role of superoxide anion // Cardiovasc. Res. 2006. V. 71. № 2. Р. 363–373. https://doi.org/10.1016/j.cardiores.2006.03.013.
  50. Gil-Ortega M., Somoza B., Huang Y. et al. Regional differences in perivascular adipose tissue impacting vascular homeostasis // Trends in Endocr. Metab. 2015. V. 26. № 7. Р. 367–375. https://doi.org/10.1016/j.tem.2015.04.003.
  51. Giordano A., Smorlesi A., Frontini A. et al. White, brown and pink adipocytes: The extraordinary plasticity of the adipose organ // Eur. J. Endocrinol. 2014. V. 170. № 5. Р. R159–R171. https://doi.org/10.1530/EJE-13-0945
  52. Gomart S., Gaudreau-Ménard C., Jespers P. et al. Leptin-Induced Endothelium-Independent Vasoconstriction in Thoracic Aorta and Pulmonary Artery of Spontaneously Hypertensive Rats: Role of Calcium Channels and Stores // PLoS One. 2017. V. 12. № 1. Р. e0169205. https://doi.org/10.1371/journal.pone.0169205.
  53. Gossl M., Herrmann J., Tang H. et al. Prevention of vasa vasorumneovascularization attenuates early neointima formation in experimental hypercholesterolemia // Basic Res. Cardiol. 2009. V. 104. № 6. Р. 695–706. https://doi.org/10.1007/s00395-009-0036-0
  54. Hajer G.R., van Haeften T.W., Visseren F.L. Adipose tissue dysfunction in obesity, diabetes, and vascular diseases // Eur. Heart J. 2008. V. 29. № 24. Р. 2959–2971. https://doi.org/10.1093/eurheartj/ehn387
  55. Hillock-Watling C., Gotlieb A.I. The pathobiology of perivascular adipose tissue (PVAT), the fourth layer of the blood vessel wall // Cardiovasc. Pathol. 2022. V. 61. Р. 107459. https://doi.org/10.1016/j.carpath.2022.107459
  56. Huang Y., Tang C., Du J., Jin H. Endogenous Sulfur Dioxide: A New Member of Gasotransmitter Family in the Cardiovascular System // Oxid. Med. Cell Longev. 2016. V. 2016. Р. 8961951. https://doi.org/10.1155/2016/8961951.
  57. Jamroz-Wiśniewska A., Gertler A., Solomon G. et al. Leptin-induced endothelium-dependent vasorelaxation of peripheral arteries in lean and obese rats: role of nitric oxide and hydrogen sulfide // PLoS One. 2014. V. 9. № 1. Р. e86744. https://doi.org/10.1371/journal.pone.0086744
  58. Kida M., Sugiyama T., Yoshimoto T., Ogawa Y. Hydrogen sulfide increases nitric oxide production with calcium-dependent activation of endothelial nitric oxide synthase in endothelial cells // Eur. J. Pharm. Sci. 2013. V. 48. № 1–2. Р. 211–215. https://doi.org/10.1016/j.ejps.2012.11.001.
  59. Klüner L.V., Oikonomou E.K., Antoniades C. Assessing Cardiovascular Risk by Using the Fat Attenuation Index in Coronary CT Angiography // Radiol. Cardiothorac. Imaging. 2021. V. 3. № 1. Р. e200563. https://doi.org/10.1148/ryct.2021200563
  60. Knock G.A., Snetkov V.A., Shaifta Y. et al. Superoxide constricts rat pulmonary arteries via Rho-kinase-mediated Ca(2+) sensitization // Free Radic. Biol. Med. 2009. V. 46. № 5. Р. 633–642. https://doi.org/10.1016/j.freeradbiomed
  61. Koenen M., Hill M.A., Cohen P., Sowers J.R. Obesity, Adipose Tissue and Vascular Dysfunc- tion // Circ. Res. 2021. V. 128. № 7. Р. 951–968. https://doi.org/10.1161/CIRCRESAHA.121.318093
  62. Kuji I., Imabayashi E., Minagawa A. et al. Brown adipose tissue demonstrating intense FDG uptake in a patient with mediastinal pheochromocytoma // Ann. Nucl. Med. 2008. V. 22. № 3. Р. 231–235. https://doi.org/10.1007/s12149-007-0096-x
  63. Kwok K.H., Lam K.S., Xu A. Heterogeneity of white adipose tissue: molecular basis and clinical implications // Exp. Mol. Med. 2016. V. 48. № 3. Р. e215. https://doi.org/10.1038/emm.2016.5
  64. Landsberg L., Aronne L.J., Beilin L.J. et al. Obesity-related hypertension: Pathogenesis, cardiovascular risk, and treatment: a position paper of the The Obesity Society and The American Society of Hypertension // Obesity (Silver Spring). 2013. V. 21. № 1. Р. 8–24. https://doi.org/10.1002/oby.20181.
  65. Lázaro-Suárez M.L., Domínguez de la Mora I., Rodríguez-Aguilar J.C. et al. Role of Perivascular Adipose Tissue in Aorta Reactivity from Obese and Hyperglycemic CD-1 Mice: New Insights into Perivascular Adipose Tissue // Metabolic syndrome and related disorders. 2023. V. 21. № 2. Р. 101–108. https://doi.org/10.1089/met.2022.0050
  66. Lee H.Y., Despres J.P., Koh K.K. Perivascular adipose tissue in the pathogenesis of cardiovascular disease // Atherosclerosis. 2013. V. 230. № 2. Р. 177–84. https://doi.org/10.1016/j.atherosclerosis.2013.07.037
  67. Lee Y.C., Chang H.H., Chiang C.L. et al. Role of perivascular adipose tissue-derived methyl palmitate in vascular tone regulation and pathogenesis of hypertension // Circulation. 2011. V. 124. № 10. Р. 1160–1171. https://doi.org/10.1161/CIRCULATIONAHA.111.027375
  68. Lee Y.C., Chang H.H., Liu C.H. et al. Methyl palmitate: A potent vasodilator released in the retina // Invest. Ophthalmol. Vis. Sci. 2010. V. 51. № 9. Р. 4746–4753. https://doi.org/10.1167/iovs.09-5132
  69. Lenz M., Arts I.C.W., Peeters R.L.M. et al. Adipose tissue in health and disease through the lens of its building blocks // Sci. Rep. 2020. V. 10. № 1. Р. 10433. https://doi.org/10.1038/s41598-020-67177-1
  70. Liu C.H., Hsu H.J., Tseng T.L. et al. COMT-Catalyzed Palmitic Acid Methyl Ester Biosynthesis in Perivascular Adipose Tissue and its Potential Role Against Hypertension // J. Pharmacol. Exp. Ther. 2020. V. 373. № 2. Р. 175–183. https://doi.org/10.1124/jpet.119.263517.
  71. Löhn M., Dubrovska G., Lauterbach B. et al. Periadventitial fat releases a vascular relaxing fac- tor // FASEB J. 2002. V. 16. № 9. Р. 1057–1063. https://doi.org/10.1096/fj.02-0024com
  72. Lu Z., Jiang Z., Tang J. et al. Functions and origins of cardiac fat // FEBS J. 2023. V. 290. № 7. Р. 1705–1718. https://doi.org/10.1111/febs.16388
  73. Lu C., Su L.Y., Lee R.M., Gao Y.J. Mechanisms for perivascular adipose tissue-mediated potentiation of vascular contraction to perivascular neuronal stimulation: The role of adipocyte-derived angiotensin II // Eur. J. Pharmacol. 2010. V. 634. № 1–3. Р. 107–112. https://doi.org/10.1016/j.ejphar.2010.02.006.
  74. Man A.W.C., Zhou Y., Xia N., Li H. Endothelial Nitric Oxide Synthase in the Perivascular Adipose Tissue // Biomedicines. 2022. V. 10. Р. 1754. https://doi.org/10.3390/biomedicines10071754
  75. Maniyadath B., Zhang Q., Gupta R.K., Man-drup S. Adipose tissue at single-cell resolution // Cell metabolism. 2023. V. 35. № 3. Р. 386–413. https://doi.org/10.1016/j.cmet.2023.02.002
  76. Mather K.J., Funahashi T., Matsuzawa Y. et al. Adiponectin, change in adiponectin, and progression to diabetes in the Diabetes Prevention Program // Diabetes. 2008. V. 57. № 4. Р. 980–986. https://doi.org/10.2337/db07-1419
  77. Mellott E., Faulkner J.L. Mechanisms of leptin-induced endothelial dysfunction // Curr. Opin. Nephrol. Hypertens. 2023. V. 32. № 2. Р. 118–123. https://doi.org/10.1097/MNH.0000000000000867
  78. Mendizabal Y., Llorens S., Nava E. Vasoactive effects of prostaglandins from the perivascular fat of mesenteric resistance arteries in WKY and SHROB rats // Life Sci. 2013. V. 93. Р. 1023–1032. https://doi.org/10.1016/j.lfs.2013.10.021.
  79. Mughal A., O'Rourke S.T. Vascular effects of apelin: Mechanisms and therapeutic potential // Pharmacol. Ther. 2018. V. 190. Р. 139–147. https://doi.org/10.1016/j.pharmthera.2018.05.013
  80. Mustafa A.K., Sikka G., Gazi S.K. et al. Hydrogen sulfide as endothelium-derived hyperpolarizing factor sulfhydrates potassium channels // Circ. Res. 2011. V. 109. № 11. Р. 1259–1268. https://doi.org/10.1161/CIRCRESAHA.111.240242.
  81. Neeland I.J., Ross R., Després J.P. et al. Visceral and ectopic fat, atherosclerosis, and cardiometabolic disease: A position statement // The lancet. Diabetes Еndocrinol. 2019. V. 7. № 9. Р. 715–725. https://doi.org/10.1016/S2213-8587(19)30084-1
  82. Neves K.B., Lobato N.S., Lopes R.A. et al. Chemerin reduces vascular nitric oxide /cGMP signalling in rat aorta: A link to vascular dysfunction in obesity? // Clinical science. 2014. V. 127. № 2. Р. 111–122. https://doi.org/10.1042/CS20130286.
  83. Nóbrega N., Araújo N.F., Reis D. et al. Hydrogen peroxide and nitric oxide induce anticontractile effect of perivascular adipose tissue via renin angiotensin system activation // Nitric Oxide. 2019. V. 84. Р. 50–59. https://doi.org/10.1016/j.niox.2018.12.011
  84. Obradovic M., Sudar-Milovanovic E., Soskic S. et al. Leptin and Obesity: Role and Clinical Implication // Front. Endocrinol. 2021. V. 12. Р. 585887. https://doi.org/10.3389/fendo.2021.585887.
  85. Oelkrug R., Polymeropoulos E.T., Jastroch M. Brown adipose tissue: Physiological function and evolutionary significance // J. Comp. Physiol B. 2015. V. 185. № 6. Р. 587–606. https://doi.org/10.1007/s00360-015-0907-7.
  86. Ohashi K., Shibata R., Murohara T., Ouchi N. Role of anti-inflammatory adipokines in obesity-related diseases // TEM. 2014. V. 25. № 7. Р. 348–355. https://doi.org/10.1016/j.tem.2014.03.009
  87. Oikonomou E.K., Marwan M., Desai M.Y. et al. Non-invasive detection of coronary inflammation using computed tomography and prediction of residual cardiovascular risk (the CRISP CT study): A post-hoc analysis of prospective outcome data // Lancet. 2018. V. 392. № 10151. Р. 929–939. https://doi.org/10.1016/S0140-6736(18)31114-0
  88. Padilla J., Jenkins N.T., Vieira-Potter V.J., Laughlin M.H. Divergent phenotype of rat thoracic and abdominal perivascular adipose tissues // Am. J. Рhysiol. Reg. Integr. Comp. Physiol. 2013. V. 304. № 7. Р. R543–R552. https://doi.org/10.1152/ajpregu.00567.2012.
  89. Pan X., Kaminga A.C., Wen S.W., Acheampong K., Liu A. Omentin-1 in diabetes mellitus: A systematic review and meta-analysis // PloS one. 2019. V. 14. № 12. Р. e0226292. https://doi.org/10.1371/journal.pone.0226292
  90. Phillips S.A., Somberg L.B., Hatoum O.A., Gutterman D.D. Mechanisms of hydrogen peroxide induced vasoconstriction in human adipose resistance arteries // FASEB J. 2007. V. 21. Р. A491. https://doi.org/10.1096/fasebj.21.5.A491-c.
  91. Police S.B., Thatcher S.E., Charnigo R. et al. Obesity promotes inflammation in periaortic adipose tissue and angiotensin II-induced abdominal aortic aneurysm formation //Arterioscl. Thromb. Vasc. Biol. 2009. V. 29. № 10. Р. 1458–1464. https://doi.org/10.1161/ATVBAHA.109.192658
  92. Rahmouni K. Obesity-associated hypertension: Recent progress in deciphering the pathogenesis // Hypertension. 2014. V. 64. № 2. Р. 215–221. https://doi.org/10.1161/HYPERTENSIONAHA.114.00920.
  93. Reilly S.M., Saltiel A.R. Adapting to obesity with adipose tissue inflammation // Nat. Rev. Endocrinol. 2017. V. 13. Р. 633–643. https://doi.org/10.1038/nrendo.2017.90.
  94. Rikitake Y. The apelin/APJ system in the regulation of vascular tone: friend or foe? // J. Вiochem. 2021. V. 169. № 4. Р. 383–386. https://doi.org/10.1093/jb/mvaa129
  95. Romacho T., Valencia I., Ramos-González M. et al. Visfatin/eNampt induces endothelial dysfunction in vivo: A role for Toll-Like Receptor 4 and NLRP3 inflammasome // Sci. Rep. 2020. V. 10. Р. 5386. https://doi.org/10.1038/s41598-020-62190-w
  96. Sahin A.S., Bariskaner H. The mechanisms of vasorelaxant effect of leptin on isolated rabbit aorta // Fundam. Clin. Pharmacol. 2007. V. 21. № 6. Р. 595–600. https://doi.org/10.1111/j.1472-8206.2007.00541.x
  97. Sahin A.S., Bariskaner H., Gökbel H., Okudan N. The dual effects of leptin on aortic rings with and without endothelium isolated from streptozotocin-induced diabetic rats // Methods Find. Exp. Clin. Pharmacol. 2009. V. 31. № 5. Р. 325–329. https://doi.org/10.1358/mf.2009.31.5.1380464.
  98. Saito T., Kurazumi H., Suzuki R. et al. Perivascular Adipose Tissue Is a Major Source of Nitric Oxide in Saphenous Vein Grafts Harvested via the No-Touch Technique // J. Am. Hear. Assoc. 2022. V. 11. Р. e020637. https://doi.org/10.1161/JAHA.120.020637.
  99. Saito M., Okamatsu-Ogura Y., Matsushita M. et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity // Diabetes. 2009. V. 58. № 7. Р. 1526–1531. https://doi.org/10.2337/db09-0530.
  100. Santiago E., Climent B., Muñoz M. et al. Hydrogen peroxide activates store-operated Ca(2+) entry in coronary arteries // Br. J. Рharmacol. 2015. V. 172. № 22. Р. 5318–5332. https://doi.org/10.1111/bph.13322.
  101. Santos R.A., Ferreira A.J., Pinheiro S.V. et al. Angiotensin-(1-7) and its receptor as a potential targets for new cardiovascular drugs // Expert. Opin. Investig. Drugs. 2005. V. 14. № 8. Р. 1019–1031. https://doi.org/10.1517/13543784.14.8.1019
  102. Santos R.A., Sampaio W.O., Alzamora A.C. et al. The ACE2/Angiotensin-(1-7)/MAS Axis of the Renin-Angiotensin System: Focus on Angiotensin-(1-7) // Physiol. Rev. 2018. V. 98. № 1. Р. 505–553. https://doi.org/10.1152/physrev.00023.2016
  103. Schleifenbaum J., Köhn C., Voblova N. et al. Systemic peripheral artery relaxation by KCNQ channel openers and hydrogen sulfide // J. Hypertens. 2010. V. 28. № 9. Р. 1875–1882. https://doi.org/10.1097/HJH.0b013e32833c20d5
  104. Schroeter M.R., Eschholz N., Herzberg S. et al. Leptin-dependent and leptin-independent paracrine effects of perivascular adipose tissue on neointima formation // Arterioscler. Thromb. Vasc. Biol. 2013. V. 33. № 5. Р. 980–987. https://doi.org/10.1161/ATVBAHA.113.301393
  105. Sena C.M., Pereira A., Fernandes R. et al. Adiponectin improves endothelial function in mesenteric arteries of rats fed a high-fat diet: Role of perivascular adipose tissue // Br. J. Pharmacol. 2017. V. 174. № 20. Р. 3514–3526. https://doi.org/10.1111/bph.13756
  106. Shabalina I.G., Ost M., Petrovic N. et al. Uncoupling protein-1 is not leaky // Biochim. Biophys. Acta. 2010. V. 1797. Р. 773–784.https://doi.org/10.1016/j.bbabio.2010.04.007
  107. Small H.Y., McNeilly S., Mary S. et al. Resistin Mediates Sex-Dependent Effects of Perivascular Adipose Tissue on Vascular Function in the Shrsp // Scientific reports. 2019. V. 9. № 1. Р. 6897. https://doi.org/10.1038/s41598-019-43326-z
  108. Soltis E.E., Cassis L.A. Influence of perivascular adipose tissue on rat aortic smooth muscle responsiveness // Clin. Exp. Hypertens. A. 1991. V. 13. № 2. Р. 277–296. https://doi.org/10.3109/10641969109042063
  109. Stanek E., Czamara K. Imaging of perivascular adipose tissue in cardiometabolic diseases by Raman spectroscopy: Towards single-cell analysis // Biochim. Biophys. Acta Mol. Cell. Biol. Lipids. 2024. V. 1869. № 5. Р. 159484. https://doi.org/10.1016/j.bbalip.2024.159484.
  110. Stastny J., Bienertova-Vasku J., Vasku A. Visfatin and its role in obesity development // Diabetes Metab. Syndr. 2012. V. 6. № 2. Р. 120–124. https://doi.org/10.1016/j.dsx.2012.08.011
  111. Sun C., Yu W., Lv B. et al. Role of hydrogen sulfide in sulfur dioxide production and vascular regulation // PloS One. 2022. V. 17. № 3. Р. e0264891. https://doi.org/10.1371/journal.pone.0264891
  112. Szasz T., Webb R.C. (2012) Perivascular adipose tissue: More than just structural support // Clin. Sci. V. 122. № 1. Р. 1–12. https://doi.org/10.1042/CS20110151
  113. Van Dam A.D., Boon M.R., Berbée J.F.P. et al. Targeting white, brown and perivascular adipose tissue in atherosclerosis development // Eur. J. Pharmacol. 2017. V. 816. Р. 82–92. https://doi.org/10.1016/j.ejphar.2017.03.051
  114. Van Gaal L.F., Mertens I.L., De Block C.E. Mechanisms linking obesity with cardiovascular disease // Nature. 2006. V. 444. № 7121. Р. 875–880. https://doi.org/10.1038/nature05487
  115. Victorio J.A., Davel A.P. Perivascular Adipose Tissue Oxidative Stress on the Pathophysiology of Cardiometabolic Diseases // Curr. Hypertens. Rev. 2020. V. 16. № 3. Р. 192–200. https://doi.org/10.2174/1573402115666190410153634
  116. Victorio J.A., Fontes M.T., Rossoni L.V., Davel A.P. Different Anti-Contractile Function and Nitric Oxide Production of Thoracic and Abdominal Perivascular Adipose Tissues // Frontiers in physiology. 2016. V. 7. Р. 295. https://doi.org/10.3389/fphys.2016.00295
  117. Villarroya F., Cereijo R., Villarroya J., Giralt M. Brown adipose tissue as a secretory organ // Nat Rev Endocrinol. 2017. V. 13. № 1. Р. 26–35. https://doi.org/10.1038/nrendo.2016.136.
  118. Wabel E.A., Krieger-Burke T., Watts S.W. Vascular chemerin from PVAT contributes to norepinephrine and serotonin-induced vasoconstriction and vascular stiffness in a sex-dependent manner // Am. J. Physiol. 2024. V. 327. № 6. P. H1577–H1589. https://doi.org/10.1152/ajpheart.00475.2024
  119. Wang J., Gao Y., Lin F. et al. Omentin-1 attenuates lipopolysaccharide (LPS)-induced U937 macrophages activation by inhibiting the TLR4/MyD88/NF-κB signaling // Arch. Вiochem. Вiophys. 2020. V. 679. Р. 108187. https://doi.org/10.1016/j.abb.2019.108187
  120. Wang N., Kuczmanski A., Dubrovska G., Gol-lasch M. Palmitic Acid Methyl Ester and Its Relation to Control of Tone of Human Visceral Arteries and Rat Aortas by Perivascular Adipose Tissue // Front. Physiol. 2018. V. 9. Р. 583. https://doi.org/10.3389/fphys.2018.00583
  121. Wang P., Xu T.Y., Guan Y.F. et al. Perivascular adipose tissue-derived visfatin is a vascular smooth muscle cell growth factor: role of nicotinamide mononucleotide // Cardiovasc. Res. 2009. V. 81. № 2. Р. 370–380. https://doi.org/10.1093/cvr/cvn288
  122. Weston A.H., Egner I., Dong Y. et al. Stimulated release of a hyperpolarizing factor (ADHF) from mesenteric artery perivascular adipose tissue: Involvement of myocyte BKCa channels and adiponectin // Br. J. Pharmacol. 2013. V. 169. № 7. Р. 1500–1509. https://doi.org/10.1111/bph.12157
  123. Withers S.B., Bussey C.E., Saxton S.N. et al. Mechanisms of adiponectin-associated perivascular function in vascular disease //Arterioscler. Thromb. Vasc. Biol. 2014. V. 34. № 8. Р. 1637–1642. https://doi.org/10.1038/srep4457110.1161/ATVBAHA.114.303031
  124. Withers S.B., Forman R., Meza-Perez S. et al. Eosinophils are key regulators of perivascular adipose tissue and vascular functionality // Scientific reports. 2017. V. 7. Р. 44571. https://doi.org/10.1038/srep44571
  125. Xia N., Horke S., Habermeier A. et al. Uncoupling of Endothelial Nitric Oxide Synthase in Perivascular Adipose Tissue of Diet-Induced Obese Mice // Arterioscler. Thromb. Vasc. Biol. 2016. V. 36. № 1. Р. 78–85. https://doi.org/10.1161/ATVBAHA.115.306263
  126. Xia N., Li H. The role of perivascular adipose tissue in obesity-induced vascular dysfunction // Br. J. Pharmacol. 2017. V. 174. № 20. Р. 3425–3442. https://doi.org/10.1111/bph.13650.
  127. Yamawaki H., Hara N., Okada M., Hara Y. Visfatin causes endothelium-dependent relaxation in isolated blood vessels // Biochem. Biophys. Res. Commun. 2009. V. 383. № 4. Р. 503–508. https://doi.org/10.1016/j.bbrc.2009.04.074
  128. Yamawaki H., Tsubaki N., Mukohda M. et al. Omentin, a novel adipokine, induces vasodilation in rat isolated blood vessels // Biochem. Biophys. Res. Comm. 2010. V. 393. № 4. Р. 668–672. https://doi.org/10.1016/j.bbrc.2010.02.053
  129. Yang T., Du Y. Distinct roles of central and peripheral prostaglandin E2 and EP subtypes in blood pressure regulation // Am. J. Hypertens. 2012. V. 25. Р. 1042–1049. https://doi.org/10.1038/ajh.2012.67.
  130. Yao Q., Huang Y., Liu A.D. et al. The vasodilatory effect of sulfur dioxide via SGC/cGMP/PKG pathway in association with sulfhydryl-dependent dimerization. //Am. J. Physiol. Regul. Integr. Comp. Physiol. 2016. V. 310. № 11. Р. R1073-80. https://doi.org/10.1152/ajpregu.00101.2015
  131. Yudkin J.S., Eringa E., Stehouwer C.D. ‘Vasocrine’ signalling from perivascular fat: Amechanism linking insulin resistance to vascular disease // Lancet. 2005. V. 365. Р. 1817–1820. https://doi.org/10.1016/S0140-6736(05)66585-3
  132. Zamanian M.Y., Maleki S., Oghenemaro E.F. et al. Omentin-1 as a promising biomarker and therapeutic target in hypertension and heart failure: A comprehensive review // Naun.-Schm. Arch. Pharmacol. 2025. 10.1007/s00210-025-04008-y. https://doi.org/10.1007/s00210-025-04008-y
  133. Zhang H., Huang Y., Bu D. et al. Endogenous sulfur dioxide is a novel adipocyte-derived inflammatory inhibitor // Sci. Rep. 2016. V. 6. Р. 27026. https://doi.org/10.1038/srep27026
  134. Zhang Y., Proenca R., Maffei M. et al. Positional Cloning of the Mouse Obese Gene and its Human Homologue // Nature. 1994. V. 372. Р. 425–432. https://doi.org/10.1038/372425a0
  135. Zhang Y.Y., Shi Y.N., Zhu N. et al. PVAT targets VSMCs to regulate vascular remodelling: Angel or demon // Journal of drug targeting / 2021. V. 29. № 5. Р. 467–475. https://doi.org/10.1080/1061186X.2020.1859515

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».