Blood Rheology and Microcirculation

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Abstract—The article discusses the features of the functioning of the microcirculation system, in particular, modern integrative ideas about the microcirculatory-tissue system, which provides blood supply and regulation of oxygen delivery in accordance with the metabolic needs of the tissue and organ. In this system, an important role belongs to the rheological properties of blood and the microrheological properties of erythrocytes, which act as intravasal regulators of microcirculation and have a significant impact on the functioning of the hemostasis system. In the implementation of the fundamental physiological function – oxygen supply to tissues matching their metabolic needs – erythrocytes play an active role, acting not only as a gas transporter, but also as a sensor of hypoxia and regulator of the endothelial vasodilatation function. The problems of dysfunction of the microcirculation and features of the rheological properties of blood in patients with severe COVID-19 are considered.

Авторлар туралы

I. Tikhomirova

Yaroslavl State Pedagogical University named after K.D. Ushinsky

Хат алмасуға жауапты Автор.
Email: tikhom-irina@yandex.ru
Russia, 150000, Yaroslavl

Әдебиет тізімі

  1. Галенок В.А., Гостинская Е.В., Диккер В.Е. Гемореология при нарушениях углеводного обмена. Новосибирск. Наука, 1987. 257 с.
  2. Зинчук В.В., Максимович Н.А., Борисюк М.В. Функциональная система транспорта кислорода: фундаментальные и клинические аспекты / под ред. Зинчука В.В. Гродно, 2003. 236 с.
  3. Зинчук В.В., Муравьев А.В., Билецкая Е.С. и соавт. Влияние газотрансмиттеров и озона на микрореологию эритроцитов и кислородтранспортную функцию крови // Тромбоз, гемостаз и реология. 2022. № 2. С. 73–83.
  4. Ильина Я.Ю., Фот Е.В., Кузьков В.В., Киров М.Ю. Сепсис-индуцированное повреждение эндотелиального гликокаликса (обзор литературы) // Вестник интенсивной терапии имени А.И. Салтанова. 2019. № 2. С. 32-39.https://doi.org/10.21320/1818-474X-2019-2-32-39
  5. Крупаткин А.И., Сидоров В.В. Функциональная диагностика микроциркуляторно-тканевых систем: колебания, информация, нелинейность. М.: Книжный дом “ЛИБРОКОМ”, 2013. 496 с.
  6. Левтов В.А., Регирер С.А., Шадрина Н.Х. Реология крови. М.: Медицина, 1982. 272 с.
  7. Муравьев А.В., Чепоров С.В. Гемореология (экспериментальные и клинические аспекты реологии крови) / Ярославль: Изд-во ЯГПУ, 2009. 178 с.
  8. Муравьев А.В., Михайлов П.В., Зинчук В.В., Тихомирова И.А., Остроумов Р.С. Гемореологические параметры у лиц с разным уровнем обеспечения организма кислородом: влияние оксида азота и сульфида водорода на микрореологические характеристики эритроцитов // Тромбоз, гемостаз и реология. 2021. № 4. С. 22–29.https://doi.org/10.25555/THR.2021.4.0993
  9. Муравьев А.В., Тихомирова И.А., Булаева С.В., Петроченко Е.П., Малышева Ю.В. Влияние газотрансмиттера монооксида углерода на микрореологию и эластичность мембран эритроцитов // Биологические мембраны. 2021. Т. 38. № 3. С. 217–224.https://doi.org/10.31857/S0233475521030063
  10. Петрищев Н.Н., Халепо О.В., Вавиленкова Ю.А., Власов Т.Д. COVID-19 и сосудистые нарушения (обзор литературы). Регионарное кровообращение и микроциркуляция. 2020. № 19(3). С. 90–98. https://doi.org/10.24884/1682-6655-2020-19-3-90-98
  11. Селезнев С.А., Назаренко Г.И., Зайцев В.С. Клинические аспекты микрогемоциркуляции. М.: Медицина, 1985. 179 с
  12. Тихомирова И.А., Рябов М.М. Сравнительный анализ показателей состояния системы гемостаза при тяжелом течении COVID-19 // Регионарное кровообращение и микроциркуляция. 2021. № 20(4). С. 87–94. https://doi.org/10.24884/1682-6655-2021-20-4-87-94
  13. Фирсов Н.Н., Джанашия П.Х. Введение в экспериментальную и клиническую гемореологию. М.: Изд-во ГОУ ВПО “РГМУ”, 2004. 280 с.
  14. Фок М.В. Некоторые вопросы биохимической физики, важные для врачей. М.: Наука, 1999. 76 с.
  15. Adderley S.P., Sridharan M., Bowles E.A. et al. Protein kinases A and C regulate receptor-mediated increases in cAMP in rabbit erythrocytes // Am. J. Physiol. Heart. Circ. Physiol. 2010. V. 298. P. H587–H593.
  16. Al-Kuraishy H.M., Al-Gareeb A.I., Al-Hamash S.M. et al. Changes in the Blood Viscosity in Patients With SARS-CoV-2 Infection // Front. Med. 2022. 9:876017.https://doi.org/10.3389/fmed.2022.876017
  17. Azarov I., Huang K.T., Basu S. et al. Nitric oxide scavenging by red blood cells as a function of hematocrit and oxygenation // J. Biol. Chem. 2005. V. 280. P. 39 024–39 032.
  18. Barrett T.J., Bilaloglu S., Cornwell M. et al. Platelets contribute to disease severity in COVID-19 // J. Thromb Haemost. 2021. V. 19. P. 3139–3153.https://doi.org/10.1111/jth.15534
  19. Barshtein G., Ben-Ami R., Yedgar S. Role of red blood cell flow behavior in hemodynamics and hemostasis // Expert Rev. Cardiovasc Ther. 2007. V. 5(4). P. 743-52.https://doi.org/10.1586/14779072.5.4.743
  20. Barvitenko N.N., Adragna N.C., Weber R.E. Erythrocyte signal transduction pathways, their oxygenation dependence and functional significance // Cell Physiol. Biochem. 2005. V. 15. P. 1–18.https://doi.org/10.1159/000083634
  21. Barvitenko N.N., Aslam M., Filosa J. et al. Tissue Oxygen Demand in Regulation of the Behavior of the Cells in the Vasculature // Microcirculation. 2013. V. 20(6). P. 484–501.https://doi.org/10.1111/micc.12052
  22. Baskurt O.K., Meiselman H.J. Cellular determinants of low shear blood viscosity // Biorheology. 1997. V. 34(3). P. 235–247.
  23. Baskurt O.K., Meiselman H.J. Blood rheology and hemodynamics // Semin. Thromb. Hemost. 2003. V. 29(5). P. 435-50. : https://doi.org/10.1055/s-2003-44551
  24. Baskurt O.K., Yalcin O., Meiselman H.J. Hemorheology and vascular control mechanisms // Clin. Hemorheol. Microcirc. 2004. V. 30. P. 169–178.
  25. Baskurt O.K., Yalcin O., Ozdem S., Armstrong J.K., Meiselman H.J. Modulation of endothelial nitric oxide synthase expression by red blood cell aggregation // Am. J. Physiol. 2004. V. 286. P. H222–H229.
  26. Baskurt O.K., Meiselman H.J. RBC aggregation: more important than RBC adhesion to endothelial cells as a determinant of in vivo blood flow in health and disease // Microcirculation. 2008. V. 15(7). P. 585–590.https://doi.org/10.1080/10739680802107447
  27. Bateman R.M., Sharpe M.D., Ellis C.G. Bench-to bedside review: microvascular dysfunction in sepsis-hemodynamics, oxygen transport, and nitric oxide // Crit. Care. 2003. V. 7(5). P. 359–73.https://doi.org/10.1186/cc2353
  28. Baumgartner H.R., Haudenschild C. Adhesion of platelets to subendothelium // Ann N.Y. Acad. Sci. 1972. V. 201. P. 22–36.
  29. Bełtowski J. Leptin and the regulation of endothelial function in physiological and pathological conditions // J. Clin. Exp. Pharmacol. Physiol. 2012. V. 39(2). P. 168-78.https://doi.org/10.1111/j.1440-1681.2011.05623.x
  30. Bergfeld G.R., Forrester T. Release of ATP from human erythrocytes in response to a brief period of hypoxia and hypercapnia // Cardiovasc. Res. 1992. V. 26. P. 40–47.
  31. Bogdanova A., Berenbrink M., Nikinmaa M. Oxygen-dependent ion transport in erythrocytes // Acta Physiol. (Oxf). 2009. V. 195. P. 305–319.https://doi.org/10.1111/j.1748-1716.2008.01934.x
  32. Broos K., Feys H.B., De Meyer S.F., Vanhoorelbeke K., Deckmyn H. Platelets at work in primary hemostasis // Blood Rev. 2011. V. 25(4). P. 155-67.https://doi.org/10.1016/j.blre.2011.03.002
  33. Brun J.-F., Varlet-Marie E., Myzia J., Mercier J., Raynaud de Mauverger E. Extended physiological functions for erythrocyte deformability and aggregation beyond regulation of oxygen delivery? // Series in Biomechanics. 2022. V. 36. № 1. P. 7–20.https://doi.org/10.7546/SB.05.2022
  34. Brun J.-F., Varlet-Marie E., Myzi J., de Mauverger E.R., Pretorius E. Metabolic Influences Modulating Erythrocyte Deformability and Eryptosis // Metabolites. 2022. V. 12.4. https://doi.org/10.3390/metabo1201004.2021
  35. Byrnes J.R., Wolberg A.S. Red blood cells in thrombosis // Blood. 2017. V. 130(16). P. 1795–1799.https://doi.org/10.1182/blood-2017-03-745349
  36. Cabel M., Meiselman H.J., Popel A.S., Johnson P.C. Contribution of red blood cell aggregation to venous vascular resistance in skeletal muscle // Am. J. Physiol. Heart Circ. Physiol. 1997. V. 272. № 41. P. H1020–1032.
  37. Chammas J., Delaney D., Chabaytah N., Abdulkarim S., Schwertani A. COVID-19 and the cardiovascular system: insights into effects and treatments // Can. J. Physiol. Pharmacol. 2021. V. 1–9. P. 1119–1127.
  38. Chen Y., Ju L.A. Biomechanical thrombosis: the dark side of force and dawn of mechano-medicine // Stroke & Vascular Neurology. 2020. 5:e000302.https://doi.org/10.1136/svn2019-000302
  39. Chérif F., Laraba-Djebari F. Bioactive Molecules Derived from Snake Venoms with Therapeutic Potential for the Treatment of Thrombo Cardiovascular Disorders Associated with COVID 19 // The Protein J. 2021. 1–43. https://doi.org/10.1007/s10930-021-10019-4
  40. Chien S. Red cell deformability and its relevance to blood flow // Ann. Rev. Physiol. 1987. V. 49. P. 177–192.
  41. Cokelet G.R., Goldsmith H.L. Decreased hydrodynamic resistance in the two-phase flow of blood through small vertical tubes at low flow rates // Circ. Res. 1991. V. 68. P. 1–17.
  42. Connes P., Tripette J., Mukisi-Mukaza M. et al. Relationships between hemodynamic, hemorheological and metabolic responses during exercise // Biorheology. 2009. V. 46. P. 133–143.
  43. Deonikar P., Kavdia M. Extracellular diffusion and permeability effects on NO-RBCs interactions using an experimental and theoretical model // Microvasc. Res. 2010. V. 79. P. 47–55.https://doi.org/10.1016/j.mvr.2009.10.002
  44. Dietrich H.H., Ellsworth M.L., Sprague R.S., Dacey R.G. Jr. Red blood cell regulation of microvascular tone through adenosine triphosphate // Am. J. Physiol. Heart. Circ. Physiol. 2000. V. 278. P. H1294–H1298.https://doi.org/10.1152/ajpheart.2000.278.4.H1294
  45. Duling B.R., Berne R.M. Longitudinal gradients in periarteriolar oxygen tension. A possible mechanism for the participation of oxygen in local regulation of blood flow // Circ. Res. 1970. V. 27. P. 669–678.
  46. Ellis C.G., Jagger J., Sharpe M. The microcirculation as a functional system // Critical Care. 2005. V. 9(suppl 4). P. S3–S8.https://doi.org/10.1186/cc3751
  47. Ellsworth M.L., Pittman R.N. Arterioles supply oxygen to capillaries by diffusion as well as by convection // Am. J. Physiol. 1990. V. 258. P. H1240–H1243.
  48. Ellsworth M.L., Ellis C.G., Goldman D. et al. Erythrocytes: oxygen sensors and modulators of vascular tone // Physiology. 2009. V. 24. P. 107–116.https://doi.org/10.1152/physiol.00038.2008
  49. Estevez B., Du X. New concepts and mechanisms of platelet activation signaling // Physiology. 2017. V. 32. P. 16 277.https://doi.org/10.1152/physiol.00020.2016
  50. Fagrell B., Intaglietta M. Microcirculation: its significance in clinical and molecular medicine // J. Intern. Med. 1997. V. 241(5). P. 349-62.https://doi.org/10.1046/j.1365-2796.1997.125148000.x
  51. Filosa J.A., Blanco V.M. Neurovascular coupling in the mammalian brain // Exp. Physiol. 2007. V. 92. P. 641–646.https://doi.org/10.1016/j.neuron.2017.07.030
  52. Forconi S., Gori T. Endothelium and hemorheology // Clin. Hemorheol. Microcirc. 2013. V. 53(1–2). P. 3–10.https://doi.org/10.3233/CH-2012-1571
  53. Foy B., Carlson J., Reinertsen E. et al. Association of Red Blood Cell Distribution Width With Mortality Risk in Hospitalized Adults With SARS-CoV-2 Infection // JAMA Netw. Open. 2020. V. 3(9):e2022058.https://doi.org/10.1001/jamanetworkopen.2020.22058
  54. Garcia-Herreros A., Yeh Y.-T., Peng Z., del Álamo J. Cyclic Mechanical Stresses Alter Erythrocyte Membrane Composition and Microstructure and Trigger Macrophage Phagocytosis // Adv. Sci. (Weinh). 2022. V. 9(20):e2201481.https://doi.org/10.1002/advs.202201481
  55. Gersh K.C., Nagaswami C., Weisel J.W. Fibrin network structure and clot mechanical properties are altered by incorporation of erythrocytes // Thromb. Haemost. 2009. V. 102(6). P. 1169–1175.https://doi.org/10.1160/TH09-03-0199
  56. Gillespie A.H., Doctor A. Red blood cell contribution to hemostasis // Front. Pediatr. 2021. V. 9:629824.https://doi.org/10.3389/fped.2021.629824
  57. Goldman D., Fraser G.M., Ellis C.G. et al. Toward a multiscale description of microvascular flow regulation: O2-dependent release of ATP from human erythrocytes and the distribution of ATP in capillary networks // Frontiers in Physiology. 2012. V. 3. Article 246.https://doi.org/10.3389/fphys2012.00246
  58. Gonzalez-Alonso J., Richardson R.S., Saltin B. Exercising skeletal muscle blood flow in humans responds to reduction in arterial oxyhaemoglobin, but not to altered free oxygen // J. Physiol. (Lond). 2001. V. 530. P. 331–341.https://doi.org/10.1111/j.1469-7793.2001.0331l.x
  59. Goto S., Ikeda Y., Saldivar E., Ruggeri Z.M. Distinct mechanisms of platelet aggregation as a consequence of different shearing flow conditions // J. Clin. Invest. 1998. V. 101. P. 479–486.
  60. Guerci P., Ergin B., Uz Z. et al. Glycocalyx Degradation Is Independent of Vascular Barrier Permeability Increase in Nontraumatic Hemorrhagic Shock in Rats // Anesth Analg. 2019. V. 129(2). P. 598–607.https://doi.org/10.1213/ANE.0000000000003918
  61. Guven G., Hilty M.P., Ince C. Microcirculation: Physiology, Pathophysiology, and Clinical Application // Blood Purif. 2020. V. 49(1–2). P. 143–150.https://doi.org/10.1159/000503775
  62. Gyawali P., Richards R.S., Hughes D.L., Tinley P. Erythrocyte aggregation and metabolic syndrome // Clin. Hemorheol. Microcirc. 2014. V. 57(1). P. 73–83.https://doi.org/10.3233/CH-131792
  63. Hamlin S., Benedik PS. Basic concepts of hemorheology in microvascular hemodynamics // Crit. Care Nurs. Clin. N Am. 2014. V. 26. P. 337–344. https://doi.org/10.1016/j.ccell.2014.04.005
  64. Handbook of Hemorheology and Hemodynamics. Baskurt O.K., Hardeman M.R., Rampling M.W., Meiselman H.J. eds. IOS Press, 2007. 468 p.
  65. Huisjes R., Bogdanova A., van Solinge W.W. et al. Squeezing for Life – Properties of Red Blood Cell Deformability // Front. Physiol. 2018. V. 9. P. 656.https://doi.org/10.3389/fphys.2018.00656
  66. Iba T., Levy J.H., Levi M., Thachil J. Coagulopathy in COVID-19 // Thromb. Haemost. 2020. V. 18. P. 2103–2109. https://doi.org/10.1111/jth.14975
  67. Ilich A., Sparkenbaugh E.M., Wolberg A.S., Key N.S., Pawlinski R. Pathologically stiff erythrocytes impede contraction of blood clots: comment // J. Thromb. Haemost. 2021. V. 19(11). P. 2893–2894.https://doi.org/10.1111/jth.15512
  68. Ince C., Mayeux P.R., Nguyen T. et al. The Endothelium in Sepsis // Shock. 2016. V. 45(3). P .259–70.https://doi.org/10.1097/SHK.0000000000000473
  69. Jackson S.P. The growing complexity of platelet aggregation // Blood. 2007. V. 09(12). P. 5087-95.https://doi.org/10.1182/blood-2006-12-027698
  70. Jacob M., Chappell D., Becker B.F. Regulation of blood flow and volume exchange across the microcirculation // Crit. Care. 2016. V. 20(1). P. 319.https://doi.org/10.1186/s13054-016-1485-0
  71. Jacob M., Bruegger D., Rehm M. et al. The endothelial glycocalyx affords compatibility of Starling’s principle and high cardiac interstitial albumin levels // Cardiovascular Research. 2007. V. 73. P. 575–586.https://doi.org/10.1016/j.cardiores.2006.11.021
  72. Jagger J.E., Bateman R.M., Ellsworth M.L., Ellis C.G. Role of erythrocyte in regulating local O2 delivery mediated by hemoglobin oxygenation // Am. J. Physiol. Heart Circ. Physiol. 2001. V. 280. P. H2833–H2839.https://doi.org/10.1152/ajpheart.2001.280.6.H2833
  73. Jensen FB. The dual roles of red blood cells in tissue oxygen delivery: oxygen carriers and regulators of local blood flow // J. Exp. Biol. 2009. V. 212. P. 3387–3393.https://doi.org/10.1242/jeb.023697
  74. Jensen F.B., Rohde S. Comparative analysis of nitrite uptake and hemoglobin-nitrite reactions in erythrocytes: sorting out uptake mechanisms and oxygenation dependencies // Am. J. Physiol. Regulatory Integrative Comp Physiol. 2010. V. 298. P. R972–R982.https://doi.org/10.1152/ajpregu.00813.2009
  75. Jia L., Bonaventura C., Bonaventura J., Stamler J.S. S-nitrosohaemoglobin: a dynamic activity of blood involved in vascular control // Nature. 1996. V. 380. P. 221–226.
  76. Johnson P.C. The importance of red blood cell aggregation in vivo – the “pro” view // Biorheology. 1995. V. 32. № 2–3. P. 105–106.
  77. Joob B., Wiwanitkit V. Blood viscosity of COVID-19 patient: a preliminary report // Am. J. Blood Res. 2021. V. 11(1). P. 93–95.
  78. Kim S., Popel A.S., Intaglietta M., Johnson P.C. Effect of erythrocyte aggregation at normal human levels on functional capillary density in rat spinotrapezius muscle // Am. J. Physiol. Heart Circ. Physiol. 2006. V. 290. № 3. P. H941–947.https://doi.org/10.1152/ajpheart.00645.2005
  79. Koller A., Kaley G. Endothelial regulation of wall shear stress and blood flow in skeletal muscle microcirculation // Am. J. Physiol. 1991. V. 260. P. H862–H868.
  80. Koller A., Dornyei G., Kaley G. Flow-induced responses in skeletal muscle venules: modulation by nitric oxide and prostaglandins // Am. J. Physiol. Heart Circ. Physiol. 1998. V. 275. P. H831–H836.
  81. Koller A., Toth P.J. Contribution of flow-dependent vasomotor mechanisms to the autoregulation of cerebral blood flow // Vasc. Res. 2012. V. 49(5). P. 375–89.https://doi.org/10.1159/000338747
  82. Kubánková M., Hohberger B., Hoffmanns J. et al. Physical phenotype of blood cells is altered in COVID-19 // Biophys. J. 2021.V. 120(14). P. 2838–2847.https://doi.org/10.1016/j.bpj.2021.05.025
  83. Labò N., Ohnuki H., Tosato G. Vasculopathy and coagulopathy associated with SARS-CoV-2 infection // Cells. 2020. V. 9(7). P. 1583.https://doi.org/10.3390/cells9071583
  84. Lang E., Lang F. Triggers, inhibitors, mechanisms, and significance of eryptosis: The suicidal erythrocyte death // BioMed Res. Int. 2015. V. 2015. P. 513518.https://doi.org/10.1155/2015/513518
  85. Lanotte L., Mauer J., Mendez S. et al. Red cells’ dynamic morphologies govern blood shear thinning under microcirculatory flow conditions // Proc. Natl. Acad. Sci. USA. 2016. V. 113. P. 13289–13294.https://doi.org/10.1073/pnas.1608074113
  86. Lee H., Na W., Lee B.-K., Lim C.-S., Shin S. Recent advances in microfluidic platelet function assays: Moving microfluidics into clinical applications // Clin. Hemorheol. Microcirc. 2019. V. 71(2). P. 249–266.https://doi.org/10.3233/CH-189416
  87. Leung Y.M., Kwan C.Y. Dual vascular effects of leptin via endothelium: hypothesis and perspective // Chin. J. Physiol. 2008. V. 51(1). P. 1–6.
  88. Li Z., Delaney M.K., O’Brien K.A., Du X. Signaling during platelet adhesion and activation // Arterioscler. Thromb. Vasc Biol. 2010. V. 30. P. 2341–2349.
  89. Lipowsky H. Microvascular Rheology and Hemodynamics // Microcirculation. 2005. V. 12. P. 5–15. https://doi.org/10.1080/10739680590894966
  90. Maier C.L., Truong A.D., Auld S.C. et al. COVID-19-associated hyperviscosity: a link between inflammation and thrombophilia? // Lancet. 2020. V. 395(10239). P. 1758–1759. https://doi.org/10.1016/S0140-6736(20)31209-5
  91. Martini J., Carpentier B., Chávez Negrete A. et al. Beneficial effects due to increasing blood and plasma viscosity // Clinical Hemorheology and Microcirculation. 2006. V. 35. № 1–2. P. 51–57.
  92. Mauer J., Mendez S., Lanotte L. et al. Flow-Induced Transitions of Red Blood Cell Shapes under Shear // Phys. Rev. Lett. 2018. V. 121(11). P. 118103.https://doi.org/10.1103/PhysRevLett.121.118103
  93. Maxwell M., Westein E., Nesbitt W.S. et al. Identification of a 2-stage platelet aggregation process mediating shear-dependent thrombus formation // Blood. 2007. V. 109(2). P. 566-76.https://doi.org/10.1182/blood-2006-07-028282
  94. McGonagle D., O’Donnell J.S., Sharif K., Emery P., Bridgewood C. Immune mechanisms of pulmonary intravascular coagulopathy in COVID-19 pneumonia // Lancet Rheumatol. 2020. V. 2(7). P. e437–e445.https://doi.org/10.1016/S2665-9913(20)30121-1
  95. Mehri R., Mavriplis C., Fenech M. Red blood cell aggregates and their effect on non-Newtonian blood viscosity at low hematocrit in a two-fluid low shear rate microfluidic system // PLoS ONE. 2018. V. 13(7). P. e0199911. https://doi.org/10.1371/journal.pone.0199911
  96. Mehta J.L., Calcaterra G., Bassareo P.P. COVID-19, thromboembolic risk, and Virchow’s triad: lesson from the past // Clin Cardiol. 2020. V. 43(12). P. 1362–1367.https://doi.org/10.1002/clc.23460
  97. Meiselman H.J. In vivo correlates of altered RBC aggregation // Biorheology. 2002. V. 39. № 5. P. 629–636.
  98. Miesbach W., Makris M. COVID-19: Coagulopathy, Risk of Thrombosis, and the Rationale for Anticoagulation // Clin. Appl. Thromb. Hemost. 2020. V. 26. P. 1–7.https://doi.org/10.1177/1076029620938149
  99. Mohandas N., Clark M.B., Jacobs M.S., Shohet S.B. Analysis of factors regulating erythrocyte deformability // J. Clin Invest. 1980. V. 66. P. 563–573.
  100. Mohandas N., Gallagher P.G. Red cell membrane: past, present, and future // Blood. 2008. V. 112. P. 3939–3948.https://doi.org/10.1182/blood-2008-07-161166
  101. Munoz C.J., Lucas A., Williams A.T., Cabrales P.A. Review on Microvascular Hemodynamics: The Control of Blood Flow Distribution, and Tissue Oxygenation // Crit. Care Clin. 2020. V. 36(2). P. 293–305.https://doi.org/10.1016/j.ccc.2019.12.011
  102. Mustafa A.K., Gadalla M.M., Snyder S.H. Signaling by Gasotransmitters // Sci. Signal. 2009. V. 2(68). P. 1–8.https://doi.org/10.1126/scisignal.268re2
  103. Nader E., Nougier C., Boisson C. et al. Increased blood viscosity and red blood cell aggregation in patients with COVID-19 // Am. J. Hematol. 2022. V. 97(3). P. 283–292. Epub 2021 Dec 23. PMID: .https://doi.org/10.1002/ajh.2644034939698
  104. Nougier C., Benoit R., Simon M. et al. Hypofibrinolytic state and high thrombin generation may play a major role in SARS-COV2 associated thrombosis // J. Thromb. Haemost. 2020. V .18(9). P. 2215–2219.https://doi.org/10.1111/jth.15016
  105. Okada H., Yoshida S., Hara A., Ogura S., Tomita H. Vascular endothelial injury exacerbates coronavirus disease 2019: the role of endothelial glycocalyx protection // Microcirculation. 2020. V. 28(3). P. e12654.https://doi.org/10.1111/micc.12654
  106. Olearczyk J.J., Stephenson A.H., Lonigro A.J., Sprague R.S. Heterotrimeric G protein Gi is involved in a signal transduction pathway for ATP release from erythrocytes // Am. J. Physiol. Heart Circ. Physiol. 2004. V. 286. P. H940–H945.https://doi.org/10.1152/ajpheart.00677.2003
  107. Ozuyaman B., Grau M., Kelm M., Merx M.W., Kleinbongard P. RBC NOS: regulatory mechanisms and therapeutic aspects // Trends. Mol. Med. 2008. V. 14. P. 314–322.https://doi.org/10.1016/j.molmed.2008.05.002
  108. Pantaleo A., De Franceschi L., Ferru E., Vono R., Turrini F. Current knowledge about the functional roles of phosphorylative changes of membrane proteins in normal and diseased red cells // J. Proteomics. 2010. V. 73. P. 445–455.https://doi.org/10.1016/j.jprot.2009.08.011
  109. Pons S., Fodil S., Azoulay E., Zafrani L. The vascular endothelium: the cornerstone of organ dysfunction in severe SARS-CoV-2 infection // Crit Care. 2020. V. 24(1). P. 353. https://doi.org/10.1186/s13054-020-03062-7
  110. Popel A.S., Johnson P.C. Microcirculation and Hemorheology // Annu. Rev. Fluid Mech. 2005. V. 37. P. 43–69.https://doi.org/10.1146/annurev.fluid.37.042604.133933
  111. Prabhakar N.R., Semenza G.L. Adaptive and maladaptive cardiorespiratory responses to continuous and intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2 // Physiol. Rev. 2012. V. 92. P. 967–1003.https://doi.org/10.1152/physrev.00030.2011
  112. Pries A.R., Secomb T.W., Gaehtgens P. The endothelial surface layer // Pflugers Arch. 2000. V. 440. P. 653–666.https://doi.org/10.1007/s004240000307
  113. Radosinska J., Vrbjar N. The role of red blood cell deformability and Na,K-ATPase function in selected risk factors of cardiovascular diseases in humans: focus on hypertension, diabetes mellitus and hypercholesterolemia // Physiol Res. 2016. V. 65 Suppl. 1. P. S43–54.https://doi.org/10.33549/physiolres.933402
  114. Reinhart WH. Platelets in vascular disease // Clin. Hemorheol. Microcirc. 2013. V. 53(1–2). P. 71-9.https://doi.org/10.3233/CH-2012-1577
  115. Reinhart W.H., Piety N.Z., Deuel J.W. et al. Washing stored red blood cells in an albumin solution improves their morphologic and hemorheologic properties // Transfusion. 2015. V. 55. P. 1872–1881.https://doi.org/10.1111/trf.13052
  116. Renoux C., Fort R., Nader E., Boisson C. et al. Impact of COVID-19 on red blood cell rheology // Br. J. Haematol. 2021. V. 192(4). P. e108–e111.https://doi.org/10.1111/bjh.17306
  117. Rogers S., Doctor A. Red Blood Cell Dysfunction in Critical Illness // Crit. Care Clin. 2020. V. 36(2). P. 267–292.https://doi.org/10.1016/j.ccc.2019.12.008
  118. Roka-Moiia Y., Walk R., Palomares D.E. et al. Platelet Activation via Shear Stress Exposure Induces a Differing Pattern of Biomarkers of Activation versus Biochemical Agonists // Thromb. Haemost. 2020. V. 120(5). P. 776–792.https://doi.org/10.1055/s-0040-1709524
  119. Rovas A., Osiaevi I., Buscher K. et al. Microvascular dysfunction in COVID-19: the MYSTIC study // Angiogenesis. 2021. V. 24. P. 145–157. https://doi.org/10.1007/s10456-020-09753-7
  120. Salamanna F., Maglio M., Landini M.P., Fini M. Platelet functions and activities as potential hematologic parameters related to Coronavirus Disease 2019 (Covid-19) // Platelets. 2020. V. 31:5. P. 627–632. . 2020.1762852https://doi.org/10.1080/09537104
  121. Saldanha C. The role of the erythrocyte on humans with COVOD-19 // Series in Biomechanics. 2022. V. 36. № 1. P. 39–43.https://doi.org/10.7546/SB.05.2022
  122. Santamaría R., González-Álvarez M., Delgado R., Esteban S., Arroyo A.G. Remodeling of the Microvasculature: May the Blood Flow Be With You // Front. Physiol. 2020. V. 11:586852.https://doi.org/10.3389/fphys.2020.586852.eCollection2020
  123. Sarelius I., Pohl U. Control of muscle blood flow during exercise: local factors and integrative mechanisms // Acta Physiol. (Oxf). 2010. V. 199. P. 349–365.https://doi.org/10.1111/j.1748-1716.2010.02129.x
  124. Schmid-Schönbein H. Fåhraeus-effect-reversal (FER) in compaction stasis (CS): microrheological and haemodynamic consequences of intravascular sedimentation of red cell aggregates // Biorheology. 1988. V. 25. P. 355–366.
  125. Schmid-Schönbein H., Gaehtgens P. What is red cell deformability? // Scand. J. Clin. Lab. Investig. 1981. V. 156. P. 13–26.
  126. Segal S.S. Regulation of blood flow in the microcirculation // Microcirculation 2005. V. 12. P. 33–45.https://doi.org/10.1080/10739680590895028
  127. Sheriff J., Malone L.E., Avila C. et al. Shear-Induced Platelet Activation is Sensitive to Age and Calcium Availability: A Comparison of Adult and Cord Blood // Cell Mol. Bioeng. 2020. V. 13(6). P. 575–590.https://doi.org/10.1007/s12195-020-00628-x
  128. Simchon S., Jan K.M., Chien S. Influence of reduced red cell deformability on regional blood flow // Am. J. Physiol. 1987. V. 253(4 Pt 2). P. H898–H903.
  129. Singel D.J., Stamler J.S. Chemical physiology of blood flow regulation by red blood cells: the role of nitric oxide and S-nitrosohemoglobin // Annu Rev. Physiol. 2005. V. 67. P. 99–145.https://doi.org/10.1146/annurev.physiol.67.060603. 090918
  130. Singhania N., Bansal S., Nimmatoori D.P. et al. Current overview on hypercoagulability in COVID-19 // Am. J. Cardiovasc Drugs. 2020. V. 20(5). P. 393–403.https://doi.org/10.1007/s40256-020-00431-z
  131. Sluyter R. P2X and P2Y receptor signaling in red blood cells // Front. Mol. Biosci. 2015. V. 2. P. 60.https://doi.org/10.3389/fmolb.2015.00060.eCollection2015
  132. Sprague R., Bowles E., Stumpf M. et al. Rabbit erythrocytes possess adenylyl cyclase type II that is activated by the heterotrimeric G proteins Gs and Gi // Pharmacol. Rep. 2005. V. 57(Suppl). P. 222–228.
  133. Sprague R.S., Bowles E.A., Hanson M.S. et al. Prostacyclin analogs stimulate receptor-mediated cAMP synthesis and ATP release from rabbit and human erythrocytes // Microcirculation. 2008. V. 15. P. 461–471.https://doi.org/10.1080/10739680701833804
  134. Sridharan M., Bowles E.A., Richards J.P. et al. Prostacyclin receptor-mediated ATP release from erythrocytes requires the voltage-dependent anion channel // Am. J. Physiol-Heart Circ. Physiol. 2012. V. 302. P. H553–H559.https://doi.org/10.1152/ajpheart.00998.2011
  135. Stamler J.S., Jia L., Eu J.P. et al. Blood flow regulation by S-nitrosohemoglobin in the physiological oxygen gradient // Science. 1997. V. 276. P. 2034–2037.
  136. Stoltz J.F., Donner M., Muller S. Hemorheology in practice: an introduction to the concept of a hemorheological profile // Rev. Port. Hemorreol. 1991. V. 5. № 2. P. 175–188.
  137. Suzuki Y., Tateishi N., Soutani M., Maeda N. Flow behavior of erythrocytes in microvessels and glass capillaries: effects of erythrocyte deformation and erythrocyte aggregation // Int. J. Microcirc. Clin. Exp. 1996. V. 16. P. 187–194.
  138. Tan B.K., Mainbourg S., Friggeri A. et al. Arterial and venous thrombo-embolism in COVID-19: a study-level meta-analysis // Thorax. 2021. V. 76(10). P. 970–979.https://doi.org/10.1136/thoraxjnl-2020-215383
  139. Tateishi N., Suzuki Y., Cicha I., Maeda N. O2 release from erythrocytes flowing in a narrow O2-permeable tube: effects of erythrocyte aggregation // Am. J. Physiol. Heart Circ. Physiol. 2001. V. 281. № 1. P. H448–H456.https://doi.org/10.1152/ajpheart.2001.281.1.H448
  140. Thomas T., Stefanoni D., Dzieciatkowska M. et al. Evidence of Structural Protein Damage and Membrane Lipid Remodeling in Red Blood Cells from COVID-19 Patients // J. Proteome Res. 2020. V. 19(11). P. 4455–4469.https://doi.org/10.1021/acs.jproteome.0c00606
  141. Tikhomirova I., Muravyov A., Petrochenko E., Malysheva Yu., Petrochenko A. Blood rheology and clotting in presence of gasotransmitters NO and H2S // Series on Biomechanics. 2022. V. 36. № 1. P. 53–60.https://doi.org/10.7546/SB.07.2022
  142. Tsai A.G., Johnson P.C., Intaglietta M. Oxygen gradients in the microcirculation // Physiol. Rev. 2003. V. 83. P. 933–963.https://doi.org/10.1152/physrev.00034.2002
  143. Tsuda K., Kimura K., Nishio I. Leptin improves membrane fluidity of erythrocytes in humans via a nitric oxide-dependent mechanism-an electron paramagnetic resonance investigation // Biochem. Biophys. Res. Commun. 2002. V. 297(3). P. 672-81.https://doi.org/10.1016/s0006-291x(02)02249-0
  144. Tutwiler V., Litvinov R.I., Protopopova A. et al. Pathologically stiff erythrocytes impede contraction of blood clots // J. Thromb. Haemost. 2021. V. 19(8). P. 1990–2001.https://doi.org/10.1111/jth.15407
  145. Tuvia S., Moses A., Gulayev N., Levin S., Korenstein R. Beta-adrenergic agonists regulate cell membrane fluctiations of human erythrocytes // J. Physiol. 1999. V. 516. P. 781–792.
  146. Uchimido R., Schmidt E.P., Shapiro N.I. The glycocalyx: a novel diagnostic and therapeutic target in sepsis. Crit. Care. 2019. V. 23(1). P. 16.https://doi.org/10.1186/s13054-018-2292-6
  147. Ulker P., Sati L., Celik–Ozenci C., Meiselman H.J., Baskurt O.K. Mechanical stimulation of nitric oxide synthesizing mechanisms in erythrocytes // Biorheology. 2009. V. 46. P.121–132.https://doi.org/10.3233/BIR-2009-0532
  148. Ulker P., Meiselman H.J., Baskurt O.K. Nitric oxide generation in red blood cells induced by mechanical stress // Clin. Hemorheol. Microcirc. 2010. V. 45. P. 169–175.https://doi.org/10.3233/CH-2010-1293
  149. Ulker P., Gunduz F., Meiselman H.J., Baskurt O.K. Nitric oxide generated by red blood cells following exposure to shear stress dilates isolated small mesenteric arteries under hypoxic conditions // Clin. Hemorheol. Microcirc. 2013. V. 54(4). P. 357-69.https://doi.org/10.3233/CH-2012-1618
  150. Uyuklu M., Meiselman H.J., Baskurt O.K. Effect of hemoglobin oxygenation level on red blood cell deformability and aggregation parameters // Clin. Hemorheol. Microcirc. 2009. V. 41. P. 179–188.https://doi.org/10.3233/CH-2009-1168
  151. Vazquez B.Y.S., Cabrales P., Tsaia A.G., Intagliettaa M. Nonlinear cardiovascular regulation consequent to changes in blood viscosity // Clinical Hemorheology and Microcirculation. 2011. V. 49. P. 29–36.https://doi.org/10.3233/CH-2011-1454
  152. Vicaut E. Opposite effects of red blood cell aggregation on resistance to blood flow // J. Cardiovasc. Surg. 1995. V. 36. P. 361–368.
  153. Vogel D.J., Formenti F., Retter A.J., Vasques F., Camporota L. A left shift in the oxyhaemoglobin dissociation curve in patients with severe coronavirus disease 2019 (COVID-19) // British J. Haematology. 2020. V. 191. P. 390–393.https://doi.org/10.1111/bjh.17128
  154. Wei H.S., Kang H., Rasheed I.-Y.D. et al. Erythrocytes Are Oxygen-Sensing Regulators of the Cerebral Microcirculation // Neuron. 2016. V. 91(4). P. 851–862.https://doi.org/10.1016/j.neuron.2016.07.016
  155. Weisel J.W., Litvinov R.I. Red blood cells: the forgotten player in hemostasis and thrombosis // J. Thromb. Haemost. 2019. V. 17(2). P. 271–282. https://doi.org/10.1111/jth.14360
  156. Wihlborg A.-K., Malmsjo M., Eyjolfsson A. et al. Extracellular nucleotides induce vasodilatation in human arteries via prostaglandins, nitric oxide and endothelium-derived hyperpolarising factor // Br. J. Pharmacol. 2003. V. 138. P. 1451–1458.https://doi.org/10.1038/sj.bjp.0705186
  157. Xu P., Zhou Q., Xu J. Mechanism of thrombocytopenia in COVID-19 patients // Ann Hematol. 2020. V. 99(6). P. 1205–12508.https://doi.org/10.1007/s00277-020-04019-0
  158. Yalcin O., Uyuklu M., Armstrong J.K., Meiselman H.J., Baskurt O.K. Graded alterations of RBC aggregation influence in vivo blood flow resistance // Am. J. Physiol. Heart. Circ. Physiol. 2004. V. 287(6). P. H2644–H2650.https://doi.org/10.1152/ajpheart.00534.2004
  159. Yalcin O., Ulker P., Yavuzer U., Meiselman H.J., Baskurt O.K. Nitric oxide generation of endothelial cells exposed to shear stress in glass tubes perfused with red blood cell suspensions: role of aggregation // Am. J. Physiol. Heart. Circ. Physiol. 2008. V. 294. P. H2098–H2105.https://doi.org/10.1152/ajpheart.00015.2008
  160. Yu F.T., Armstrong J.K., Tripette J., Meiselman H.J., Cloutier G. A local increase in red blood cell aggregation can trigger deep vein thrombosis: evidence based on quantitative cellular ultrasound imaging // J. Thromb. Haemost. 2011. V. 9(3). P. 481–488.https://doi.org/10.1111/j.1538-7836.2010.04164.x

© И.А. Тихомирова, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>