Внеклеточные везикулы фолликулярной жидкости: клинические аспекты и молекулярная биология

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Сравнительно недавно в составе фолликулярной жидкости (ФЖ) человека были обнаружены внеклеточные везикулы (ВВ), представляющие собой мембранные пузырьки, секретируемые различными типами клеток репродуктивных тканей во внеклеточную среду. Изначально предполагали, что секреция ВВ может представлять собой механизм, используемый клетками для экскреции внутриклеточного «мусора», однако последующие исследования установили, что посредством ВВ происходит целенаправленная доставка специфической молекулярной информации, заключенной в двухслойную липидную мембрану, от клетки-донора к клетке-реципиенту. ВВ содержат биоактивные молекулы, такие как мРНК, микроРНК, белки и липиды, обеспечивающие коммуникацию и взаимодействие между различными клетками и тканями, в том числе между ооцитом и соматическими клетками растущего фолликула. ВВ ФЖ имеют важное значение, связанное с биологическими процессами фолликулогенеза, оогенеза и раннего эмбриогенеза.

Заключение: Представленные исследования позволяют расширить понимание сложных механизмов репродуктивной биологии, а также улучшить возможности использования ВВ для оптимизации эмбриологического этапа культивирования ооцитов и эмбрионов in vitro в программах вспомогательных репродуктивных технологий.

Об авторах

Алина Анатольевна Довгань

ФГБУ «Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии имени академика В.И. Кулакова» Министерства здравоохранения Российской Федерации

Автор, ответственный за переписку.
Email: lina.dovgan@gmail.com
ORCID iD: 0000-0002-4927-3590

к.м.н., врач акушер-гинеколог, н.с. отделения вспомогательных технологий в лечении бесплодия им. профессора Б.В. Леонова

Россия, Москва

Зумрият Фахрудиновна Ахмедова

ФГБУ «Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии имени академика В.И. Кулакова» Министерства здравоохранения Российской Федерации

Email: zyuka-1997@mail.ru
ORCID iD: 0000-0002-4483-8820

аспирант отделения вспомогательных технологий в лечении бесплодия им. профессора Б.В. Леонова

Россия, Москва

Анастасия Павловна Сысоева

ФГБУ «Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии имени академика В.И. Кулакова» Министерства здравоохранения Российской Федерации

Email: sysoeva.a.p@gmail.com
ORCID iD: 0000-0002-6502-4498

клинический эмбриолог отделения вспомогательных технологий в лечении бесплодия им. профессора Б.В. Леонова

Россия, Москва

Борис Владимирович Зингеренко

ФГБУ «Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии имени академика В.И. Кулакова» Министерства здравоохранения Российской Федерации

Email: b_zingerenko@oparina4.ru
ORCID iD: 0000-0002-8784-5502

м.н.с. отделения вспомогательных технологий в лечении бесплодия им. профессора Б.В. Леонова

Россия, Москва

Евгений Андреевич Романов

ФГБУ «Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии имени академика В.И. Кулакова» Министерства здравоохранения Российской Федерации

Email: e_romanov@oparina4.ru

клинический эмбриолог отделения вспомогательных технологий в лечении бесплодия им. профессора Б.В. Леонова

Россия, Москва

Денис Николаевич Силачев

ФГБУ «Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии имени академика В.И. Кулакова» Министерства здравоохранения Российской Федерации

Email: d_silachev@oparina4.ru
ORCID iD: 0000-0003-0581-9755

д.б.н., руководитель лаборатории клеточных технологий

Россия, Москва

Наталья Петровна Макарова

ФГБУ «Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии имени академика В.И. Кулакова» Министерства здравоохранения Российской Федерации

Email: np_makarova@oparina4.ru

д.б.н., в.н.с. отделения вспомогательных технологий в лечении бесплодия им. профессора Б.В. Леонова

Россия, Москва

Елена Анатольевна Калинина

ФГБУ «Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии имени академика В.И. Кулакова» Министерства здравоохранения Российской Федерации

Email: e_kalinina@oparina4.ru
ORCID iD: 0000-0002-8922-2878

д.м.н., профессор, заведующая отделением отделения вспомогательных технологий в лечении бесплодия им. профессора Б.В. Леонова

Россия, Москва

Список литературы

  1. Rodgers R.J., Irving-Rodgers H.F. Formation of the ovarian follicular antrum and follicular fluid. Biol. Reprod. 2010; 82(6): 1021-9. https://dx.doi.org/10.1095/biolreprod.109.082941.
  2. Hennet M.L., Combelles C.M.H. The antral follicle: a microenvironment for oocyte differentiation. Int. J. Dev. Biol. 2012; 56(10-12): 819-31. https://dx.doi.org/10.1387/ijdb.120133cc.
  3. Фортыгина Ю.А., Макарова Н.П., Непша О.С., Лобанова Н.Н., Калинина Е.А. Роль липидомных исследований в репродукции человека и исходах программ лечения бесплодия методами вспомогательных репродуктивных технологий. Акушерство и гинекология. 2022; 10: 14-20. [Fortygina Yu.A., Makarova N.P., Nepsha O.S., Lobanova N.N., Kalinina E.A. The role of lipidomic studies in human reproduction and in the outcomes of infertility treatment programs using assisted reproductive technologies. Obstetrics and Gynecology. 2022; (10): 14-20. (in Russian)]. https://dx.doi.org/10.18565/aig.2022.10.14-20.
  4. Гапоненко А.А., Митюрина Е.В., Франкевич В.Е. Метаболомный профиль фолликулярной жидкости как маркер качества ооцитов в программах вспомогательных репродуктивных технологий. Акушерство и гинекология. 2021; 11: 26-31. [Gaponenko A.A., Mityurina E.V., Frankevich V.E. The follicular fluid metabolomic profile as a marker for oocyte quality in assisted reproductive technology programs. Obstetrics and Gynecology. 2021; (11): 26-31. (in Russian)]. https://dx.doi.org/10.18565/aig.2021.11.26-31.
  5. Шамина М.А., Тимофеева А.В., Федоров И.С., Калинина Е.А. Оценка уровня экспрессии пивиРНК hsa_piR_020497 в фолликулярной жидкости пациенток с различными исходами программ экстракорпорального оплодотворения. Акушерство и гинекология. 2021; 11: 143-53. [Shamina M.A., Timofeeva A.V., Fedorov I.S., Kalinina E.A. Assessment of the expression level of hsa_pir_020497 piRNA in the follicular fluid of patients with different in vitro fertilization outcomes. Obstetrics and Gynecology. 2021; (11): 143-53. (in Russian)]. https://dx.doi.org/10.18565/aig.2021.11.143-153.
  6. Zamah A.M., Hassis M.E., Albertolle M.E., Williams K.E. Proteomic analysis of human follicular fluid from fertile women. Clin. Proteomics. 2015; 12(1): 5. https://dx.doi.org/10.1186/s12014-015-9077-6.
  7. Andersen M.M., Kroll J., Byskov A.G., Faber M. Protein composition in the fluid of individual bovine follicles. Reproduction. 1976; 48(1): 109-18. https://dx.doi.org/10.1530/jrf.0.0480109.
  8. Ambekar A.S., Nirujogi R.S., Srikanth S.M., Chavan S., Kelkar D.S., Hinduja I. et al. Proteomic analysis of human follicular fluid: a new perspective towards understanding folliculogenesis. J. Proteomics. 2013; 87: 68-77. https://dx.doi.org/10.1016/j.jprot.2013.05.017.
  9. György B., Szabó T.G., Pásztói M., Pál Z., Misják P., Aradi B. et al. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell. Mol. Life Sci. 2011; 68(16): 2667-88. https://dx.doi.org/10.1007/s00018-011-0689-3.
  10. Raposo G., Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J. Cell Biol. 2013; 200(4): 373-83. https://dx.doi.org/10.1083/jcb.201211138.
  11. Simpson R.J., Jensen S.S., Lim J.W.E. Proteomic profiling of exosomes: current perspectives. Proteomics. 2008; 8(19): 4083-99. https://dx.doi.org/10.1002/pmic.200800109.
  12. Valadi H., Ekström K., Bossios A., Sjöstrand M., Lee J.J., Lötvall J.O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 2007; 9(6): 654-9. https://dx.doi.org/10.1038/ncb1596.
  13. EL Andaloussi S., Mäger I., Breakefield X.O., Wood M.J.A. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat. Rev. Drug Discov. 2013; 12(5): 347-57. https://dx.doi.org/10.1038/nrd3978.
  14. Mathivanan S., Ji H., Simpson R.J. Exosomes: extracellular organelles important in intercellular communication. J. Proteomics. 2010; 73(10): 1907-20. https://dx.doi.org/10.1016/j.jprot.2010.06.006.
  15. Cocucci E., Racchetti G., Meldolesi J. Shedding microvesicles: artefacts no more. Trends Cell Biol. 2009; 19(2): 43-51. https://dx.doi.org/10.1016/ j.tcb.2008.11.003.
  16. Tannetta D., Dragovic R., Alyahyaei Z., Southcombe J. Extracellular vesicles and reproduction–promotion of successful pregnancy. Cell Mol. Immunol. 2014; 11(6): 548-63. https://dx.doi.org/10.1038/cmi.2014.42.
  17. Théry C., Zitvogel L., Amigorena S. Exosomes: composition, biogenesis and function. Nat. Rev. Immunol. 2002; 2(8): 569-79. https://dx.doi.org/10.1038/nri855.
  18. Théry C., Ostrowski M., Segura E. Membrane vesicles as conveyors of immune responses. Nat. Rev. Immunol. 2009; 9(8): 581-93. https://dx.doi.org/10.1038/nri2567.
  19. Maas S.L.N., Breakefield X.O., Weaver A.M. Extracellular vesicles: unique intercellular delivery vehicles. Trends Cell Biol. 2017; 27(3): 172-88. https://dx.doi.org/10.1016/j.tcb.2016.11.003.
  20. Tesfaye D., Hailay T., Salilew-Wondim D., Hoelker M., Bitseha S., Gebremedhn S. Extracellular vesicle mediated molecular signaling in ovarian follicle: Implication for oocyte developmental competence. Theriogenology. 2020; 150: 70-4. https://dx.doi.org/10.1016/j.theriogenology.2020.01.075.
  21. Pavani K.C., Alminana C., Wydooghe E., Catteeuw M., Ramírez M.A., Mermillod P. et al. Emerging role of extracellular vesicles in communication of preimplantation embryos in vitro. Reprod. Fertil. Dev. 2017; 29(1): 66. https://dx.doi.org/10.1071/RD16318.
  22. van Engeland M., Kuijpers H.J.H., Ramaekers F.C.S., Reutelingsperger C.P.M., Schutte B. Plasma membrane alterations and cytoskeletal changes in apoptosis. Exp. Cell Res. 1997; 235(2): 421-30. https://dx.doi.org/10.1006/excr.1997.3738.
  23. Théry C., Witwer K.W., Aikawa E., Alcaraz M.J., Anderson J.D., Andriantsitohaina R. et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles. 2018; 7(1): 1535750. https://dx.doi.org/10.1080/ 20013078.2018.1535750.
  24. Witwer K.W., Buzás E.I., Bemis L.T., Bora A., Lässer C., Lötvall J. et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J. Extracell. Vesicles. 2013; 2(1): 20360. https://dx.doi.org/10.3402/jev.v2i0.20360.
  25. Neyroud A.S., Chiechio R.M., Moulin G., Ducarre S., Heichette C., Dupont A. et al. Diversity of extracellular vesicles in human follicular fluid: morphological analysis and quantification. Int. J. Mol. Sci. 2022; 23(19): 11676. https://dx.doi.org/10.3390/ijms231911676.
  26. van der Pol E., Böing A.N., Harrison P., Sturk A., Nieuwland R. Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol. Rev. 2012; 64(3): 676-705. https://dx.doi.org/10.1124/pr.112.005983.
  27. Liu Y.J., Wang C. A review of the regulatory mechanisms of extra cellular vesicles-mediated intercellular communication. Cell Commun. Signal. 2023; 21(1): 77. https://dx.doi.org/10.1186/s12964-023-01103-6.
  28. Ruiz-González I., Xu J., Wang X., Burghardt R.C., Dunlap K.A., Bazer F.W. Exosomes, endogenous retroviruses and toll-like receptors: pregnancy recognition in ewes. Reproduction. 2015; 149(3): 281-91. https://dx.doi.org/10.1530/REP-14-0538.
  29. Al-Dossary A.A., Strehler E.E., Martin-DeLeon P.A. Expression and secretion of plasma membrane Ca2+-ATPase 4a (PMCA4a) during murine estrus: association with oviductal exosomes and uptake in sperm. PLoS One. 2013; 8(11): e80181. https://dx.doi.org/10.1371/journal.pone.0080181.
  30. da Silveira J.C., Veeramachaneni D.N.R., Winger Q.A., Carnevale E.M., Bouma G.J. Cell-secreted vesicles in equine ovarian follicular fluid contain miRNAs and proteins: a possible new form of cell communication within the ovarian follicle. Biol. Reprod. 2012; 86(3): 71. https://dx.doi.org/10.1095/biolreprod.111.093252.
  31. Machtinger R., Laurent L.C., Baccarelli A.A. Extracellular vesicles: roles in gamete maturation, fertilization and embryo implantation. Hum. Reprod. Update. 2015; dmv055. https://dx.doi.org/10.1093/humupd/dmv055.
  32. Lopera-Vásquez R., Hamdi M., Fernandez-Fuertes B., Maillo V., Beltrán-Breña P., Calle A. et al. Extracellular vesicles from BOEC in In Vitro embryo development and quality. PLoS One. 2016; 11(2): e0148083. https://dx.doi.org/10.1371/journal.pone.0148083.
  33. Mellisho E.A., Velásquez A.E., Nuñez M.J., Cabezas J.G., Cueto J.A., Fader C. et al. Identification and characteristics of extracellular vesicles from bovine blastocysts produced in vitro. PLoS One. 2017; 12(5): e0178306. https://dx.doi.org/10.1371/journal.pone.0178306.
  34. Ng Y.H., Rome S., Jalabert A., Forterre A., Singh H., Hincks C.L., Salamonsen L.A. Endometrial exosomes microvesicles in the uterine microenvironment: a new paradigm for embryo-endometrial cross talk at implantation. PLoS One. 2013; 8(3): e58502. https://dx.doi.org/10.1371/journal.pone.0058502.
  35. Asea A., Jean-Pierre C., Kaur P., Rao P., Linhares I.M., Skupski D., Witkin S.S. Heat shock protein-containing exosomes in mid-trimester amniotic fluids. J. Reprod. Immunol. 2008; 79(1): 12-7. https://dx.doi.org/10.1016/ j.jri.2008.06.001.
  36. Aalberts M., van Dissel-Emiliani F.M., van Adrichem N.P., van Wijnen M., Wauben M.H., Stout T.A., Stoorvogel W. Identification of distinct populations of prostasomes that differentially express prostate stem cell antigen, annexin A1, and GLIPR2 in humans. Biol. Reprod. 2012; 86(3): 82. https://dx.doi.org/10.1095/biolreprod.111.095760.
  37. Andronico F., Battaglia R., Ragusa M., Barbagallo D., Purrello M., di Pietro C. Extracellular vesicles in human oogenesis and implantation. Int. J. Mol. Sci. 2019; 20(9): 2162. https://dx.doi.org/10.3390/ijms20092162.
  38. Diez-Fraile A., Lammens T., Tilleman K., Witkowski W., Verhasselt B., De Sutter P. et al. Age-associated differential microRNA levels in human follicular fluid reveal pathways potentially determining fertility and success of in vitro fertilization. Hum. Fertil. 2014; 17(2): 90-8. https://dx.doi.org/10.3109/ 14647273.2014.897006.
  39. Sang Q., Yao Z., Wang H., Feng R., Wang H., Zhao X. et al. Identification of MicroRNAs in human follicular fluid: characterization of MicroRNAs that govern steroidogenesis in vitro and are associated with polycystic ovary syndrome in vivo. J. Clin. Endocrinol. Metab. 2013; 98(7): 3068-79. https://dx.doi.org/10.1210/jc.2013-1715.
  40. Santonocito M., Vento M., Guglielmino M.R., Battaglia R., Wahlgren J., Ragusa M. et al. Molecular characterization of exosomes and their microRNA cargo in human follicular fluid: bioinformatic analysis reveals that exosomal microRNAs control pathways involved in follicular maturation. Fertil. Steril. 2014; 102(6): 1751-61.e1. https://dx.doi.org/10.1016/j.fertnstert.2014.08.005.
  41. Sohel M.M.H., Hoelker M., Noferesti S.S., Salilew-Wondim D., Tholen E., Looft C. et al. Exosomal and non-exosomal transport of extra-C+cellular microRNAs in follicular fluid: implications for bovine oocyte developmental competence. PLoS One. 2013; 8(11): e78505. https://dx.doi.org/10.1371/journal.pone.0078505.
  42. Sohel M.M.H., Hoelker M., Schellander K., Tesfaye D. The extent of the abundance of exosomal and non‐exosomal extracellular miRNAs in the bovine follicular fluid. Reprod. Domest. Anim. 2022; 57(10): 1208-17. https://dx.doi.org/10.1111/rda.14195.
  43. Rooda I., Hasan M.M., Roos K., Viil J., Andronowska A., Smolander O.P. et al. Cellular, extracellular and extracellular vesicular miRNA profiles of Pre-ovulatory follicles indicate signaling disturbances in polycystic ovaries. Int. J. Mol. Sci. 2020; 21(24): 9550. https://dx.doi.org/10.3390/ ijms21249550.
  44. Navakanitworakul R., Hung W.-T., Gunewardena S., Davis J.S., Chotigeat W., Christenson L.K. Characterization and small RNA content of extracellular vesicles in follicular fluid of developing bovine antral follicles. Sci. Rep. 2016; 6(1): 25486. https://dx.doi.org/10.1038/srep25486.
  45. Hung W.T., Hong X., Christenson L.K., McGinnis L.K. Extracellular vesicles from bovine follicular fluid support cumulus expansion. Biol. Reprod. 2015; 93(5): 117. https://dx.doi.org/10.1095/biolreprod.115.132977.
  46. Hung W.T., Navakanitworakul R., Khan T., Zhang P., Davis J.S., McGinnis L.K., Christenson L.K. Stage-specific follicular extracellular vesicle uptake and regulation of bovine granulosa cell proliferation. Biol. Reprod. 2017; 97(4): 644-55. https://dx.doi.org/10.1093/biolre/iox106.
  47. da Silveira J.C., Carnevale E.M., Winger Q.A., Bouma G.J. Regulation of ACVR1 and ID2 by cell-secreted exosomes during follicle maturation in the mare. Reprod. Biol. Endocrinol. 2014; 12(1): 44. https://dx.doi.org/10.1186/ 1477-7827-12-44.
  48. da Silveira J.C., Andrade G.M., Del Collado M., Sampaio R.V., Sangalli J.R., Silva L.A. et al. Supplementation with small-extracellular vesicles from ovarian follicular fluid during in vitro production modulates bovine embryo development. PLoS One. 2017; 12(6): e0179451. https://dx.doi.org/10.1371/journal.pone.0179451.
  49. Sysoeva A.P., Makarova N.P., Silachev D.N., Lobanova N.N., Shevtsova Y.A., Bragina E.E. et al. Influence of extracellular vesicles of the follicular fluid on morphofunctional characteristics of human sperm. Bull. Exp. Biol. Med. 2021; 172(2): 254-62. https://dx.doi.org/10.1007/s10517-021-05372-4.
  50. Rodrigues T.A., Tuna K.M., Alli A.A., Tribulo P., Hansen P.J., Koh J., Paula-Lopes F.F. Follicular fluid exosomes act on the bovine oocyte to improve oocyte competence to support development and survival to heat shock. Reprod. Fertil. Dev. 2019; 31(5): 888. https://dx.doi.org/10.1071/RD18450.
  51. Milyutina Yu.P., Korenevskii A.V., Vasilyeva V.V., Bochkovskii S.K., Ishchenko A.M., Simbirtsev A.S. et al. Caspase activation in trophoblast cells after interacting with microparticles produced by natural killer cells in vitro. J. Evol. Biochem. Physiol. 2022; 58(6): 1834-46. https://dx.doi.org/10.1134/S002209302206014X.
  52. Yuan C., Li Z., Zhao Y., Wang X., Chen L., Zhao Z. et al. Follicular fluid exosomes: important modulator in proliferation and steroid synthesis of porcine granulosa cells. FASEB J. 2021; 35(5): e21610. https://dx.doi.org/10.1096/fj.202100030RR.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».