On the convergence of the Dirichlet grid problem with a singularity for a singularly perturbed convection–diffusion equation


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

The Dirichlet problem for a singulary perturbed convection–diffusion equation in a rectangle when a discontinuity at the flow exit the first derivative of the boundary condition gives rise to an inner layer for the solution. On piecewise-uniform Shishkin grids that condense near regular and characteristic layers, the solution obtained using the classical five-point difference scheme with a directed difference is shown to converge with respect to the small parameter to solve the original problem in the grid norm Lh almost with the first order. This theoretical result is confirmed via numerical analysis.

Об авторах

T. Ershova

Faculty of Computational Mathematics and Cybernetics

Автор, ответственный за переписку.
Email: ersh@cs.msu.su
Россия, Moscow, 119991

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Allerton Press, Inc., 2016

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).