Effect of Resonance-Wave Actions on Sedimentation Stability of Starch Nanoparticle Dispersions

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The influence of resonance wave effects on the sedimentation stability of potato and corn starch nanoparticle dispersions obtained by coprecipitation was studied. It has been established that the proportion of the dispersed phase of potato starch nanoparticle dispersions formed using traditional mixing remains unchanged for two days. For corn starch nanoparticle dispersions, this indicator remains at the initial level only for the first five minutes. The use of wave action at the stage of coprecipitation leads to an increase in the values of the ξ-potential of the obtained nanoparticles by 4.5 and 3.5 times for corn and potato starches, respectively. Due to this, the dispersion stability of corn starch nanoparticles increases up to two days and dispersions of potato starch nanoparticles increase up to forty days. The results presented in this article are the basis for the development of a resource-saving technology for obtaining highly stable dispersions of biopolymer nanoparticles for food, medical, pharmaceutical, and other industries.

Sobre autores

S. Ganiev

Mechanical Engineering Research Institute of the Russian Academy of Sciences (IMASH RAN)

Email: kobjakovinka@mail.ru
101990, Moscow, Russia

V. Kasilov

Mechanical Engineering Research Institute of the Russian Academy of Sciences (IMASH RAN)

Email: kobjakovinka@mail.ru
101990, Moscow, Russia

O. Kislogubova

Mechanical Engineering Research Institute of the Russian Academy of Sciences (IMASH RAN)

Email: kobjakovinka@mail.ru
101990, Moscow, Russia

O. Butikova

Mechanical Engineering Research Institute of the Russian Academy of Sciences (IMASH RAN)

Email: kobjakovinka@mail.ru
101990, Moscow, Russia

N. Kochkina

Mechanical Engineering Research Institute of the Russian Academy of Sciences (IMASH RAN);
Krestov Institute of Solution Chemistry, Russian Academy of Sciences

Autor responsável pela correspondência
Email: kobjakovinka@mail.ru
101990, Moscow, Russia; 153045, Ivanovo, Russia

Bibliografia

  1. Campelo P.H., Sant’Ana A., Pedrosa M.T., Clerici S. Starch nanoparticles: production methods, structure, and properties for food applications // Current Opinion in Food Science. 2020. V. 33. P. 136.
  2. Sivamaruthi B.S., Nallasamy P., Suganthy N., Kesika P., Chaiyasut Ch. Pharmaceutical and biomedical applications of starch-based drug delivery system: A review // J. of Drug Delivery Science and Technology. 2022. V. 77. P. 103890.
  3. Rodrigues A., Emeje M. Recent applications of starch derivatives in nanodrug delivery // Carbohydrate Polymers. 2012. V. 87. P. 987.
  4. Marzán L.M.L., Correa-Duarte M.A., Pastoriza-Santos I., Mulvaney P., Ung Th., Giersig M., Kotov N.A. Chapter 5. Core-shell nanoparticles and assemblies thereof // In Handbook of Surfaces and Interfaces of Materials / Ed. H. S. Nalwa. V. 3. Nanostructured materials, micelles, and colloids. 2021. P. 189.
  5. Napper D.H. Steric stabilization // J. of Colloid and Interface Science. 1977. V. 58 (2). P. 390.
  6. Fritz G., Schädler V., Willenbacher N., Wagner N.J. Electrosteric stabilization of colloidal dispersions // Langmuir. 2002. V. 18. № 16. P. 6381.
  7. Masoudipour E., Kashanian S., Azandaryani A.H., Omidfar K., Bazyar E. Surfactant effects on the particle size, zeta potential, and stability of starch nanoparticles and their use in a pH-responsive manner // Cellulose. 2017. V. 24. № 10. P. 4217.
  8. Masoudipour, Elham K., Soheila A., Abbas H., Omidfar K., Elham B. Surfactant effects on the particle size, zeta potential, and stability of starch nanoparticles and their use in a pH-responsive manner // Cellulose. 2018. V. 24 (10). P. 4217.
  9. Li X., Qin Y., Liu C., Jiang S., Xiong L., Sun Q. Size-controlled starch nanoparticles prepared by self-assembly with different green surfactant: The effect of electrostatic repulsion or steric hindrance // Food Chemistry. 2016. V. 199. P. 356.
  10. Wei B., Zhang B., Sun B., Jin Z., Xu X., Tian Y. Aqueous re-dispersibility of starch nanocrystal powder improved by sodium hypochlorite oxidation // Food Hydrocolloids. 2016. V. 52. P. 29.
  11. Liu Q., Li F., Lu H., Li M., Liu J., Zhang S., Sun Q., Xiong L. Enhanced dispersion stability and heavy metal ion adsorption capability of oxidized starch nanoparticles // Food Chemistry. 2018. V. 242. P. 256.
  12. Wang J., Yu Y.D., Zhang Z.G., Wu W.C., Sun P.L., Cai M., Yang K. Formation of sweet potato starch nanoparticles by ultrasonic -assisted nanoprecipitation: Effect of cold plasma treatment // Frontiers in Bioengineering and Biotechnology. 2022. V. 10. P. 986033.
  13. Jeonga O., Shina M. Preparation and stability of resistant starch nanoparticles, using acid hydrolysis and cross-linking of waxy rice starch // Food Chemistry. 2018. V. 256. P. 77.
  14. Shaolong R. Junyu T., Yu Q., Jingyi W., Tianyi Y., Jianwei Z., De G., Enbo X., Donghong L. Mechanical force-induced dispersion of starch nanoparticles and nanoemulsion: Size control, dispersion behaviour, and emulsified stability // Carbohydrate Polymers. 2022. V. 275. P. 118711.
  15. Ганиев Р.Ф., Ганиев С.Р., Касилов В.П., Пустовгар А.П. Волновые технологии в инновационном машиностроении. М.: Институт компьютерных исследований, 2014. 106 с.
  16. Ганиев Р.Ф., Украинский Л.Е. Нелинейная волновая механика и технология. М.: Научно-издательский центр “Регулярная и хаотическая динамика”, 2008. 712 с.
  17. Касилов В.П., Курменев Д.В. Волновые технологические машины и аппараты с электромеханическими резонансными генераторами колебаний и волн // Сборник материалов международной научной конференции “Машины, технологии и материалы для современного машиностроения”. Москва, 2018. С. 76.
  18. Pal A., Pal R. Rheology of Emulsions Thickened by Starch Nanoparticles // Nanomaterials. 2022. V. 12. P. 2391.
  19. Lu G.W., Gao P. Emulsions and microemulsions for topical and transdermal drug delivery // In Handbook of Non-invasive drug delivery systems, 2010. P. 59.
  20. Müller R.H., Jacobs C. Buparvaquone mucoadhesive nanosuspension: preparation, optimisation and long-term stability // Int. J. of Pharmaceutics. 2022. V. 237. P. 151.
  21. Kadu P.J., Kushare S.S., Thacker D.D., Gattani S.G. Enhancement of oral bioavailability of atorvastatin calcium by self-emulsifying drug delivery systems (SEDDS) // Pharmaceutical development and technology. 2011. V. 16 (1). P. 65.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (322KB)
3.

Baixar (1MB)
4.

Baixar (863KB)
5.

Baixar (45KB)

Declaração de direitos autorais © С.Р. Ганиев, В.П. Касилов, О.Н. Кислогубова, О.А. Бутикова, Н.Е. Кочкина, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies