НАДЕЖНОСТЬ, ПРОЧНОСТЬ, ИЗНОСОСТОЙКОСТЬ МАШИН И КОНСТРУКЦИЙ

УДК 62-192(075.8)

ИССЛЕДОВАНИЕ КОРРЕКТИРУЮЩЕЙ ФУНКЦИИ ДЛЯ РАСЧЕТОВ ДОЛГОВЕЧНОСТИ ПРИ СТОХАСТИЧЕСКОМ НАГРУЖЕНИИ

© 2024 г. Ю. П. Маньшин¹, Е. Ю. Маньшина^{1, *}

¹Донской государственный технический университет, Ростов-на-Дону, Россия *e-mail: elemans@mail.ru

Поступила в редакцию 14.03.2024 г. После доработки 10.06.2024 г. Принята к публикации 15.06.2024 г.

В статье проведен численный анализ влияния корректирующей функции на расчетную долговечность. Сформированы границы изменения аргументов — пределов выносливости и максимальных амплитуд напряжений разрушающего блока нагружения. При граничных условиях, приводимых в источниках, получены парадоксальные на первый взгляд результаты, представленные графиками.

Ключевые слова: предел выносливости, блок нагружения, амплитуда напряжения, ресурс, функция распределения ресурса

DOI: 10.31857/S0235711924050054, EDN: NTXNCZ

При проведении полевых испытаний зерноуборочных комбайнов и других сельскохозяйственных машин для оценки надежности по записям напряжений в конструкциях использовали программу SPD7 ALT, рассылаемую отраслевым институтом ВИСХОМ. Высокий авторитет отраслевой науки и удобство в использовании программы обеспечило ей широкое использование лабораториями надежности в 1985—2002 гг. Программа воспринимала цифровой массив ординат аналогового процесса, полученного от деформаций в точке измерений, выдавала статистические характеристики ординат, гистограмму амплитуд и расчет ресурса по линейной и корректированной гипотезам накопления усталостного повреждения с вероятностью 0.5 (50%) и 0.98 (98%) (рис. 1).

Обозначения в таблицах статистических характеристик рис. 1a, б: МАКС, МИН.— максимальное и минимальное значения массива ординат напряжения, М.О.— математическое ожидание, ДИСП.— дисперсия, С.К.О.— среднее квадратическое отклонение.

Для определения ресурса необходимо ввести характеристики выносливости деталей: предел выносливости σ_{-D} , показатель кривой выносливости m, базовое число циклов N_G [1] (рис. 1 Γ).

Предположительно, программа SPD7 ALT работала по алгоритму, описанному в [1, 2, 4, 5], который должен был включать:

1. Определение медианных ресурсов деталей на основании линейной гипотезы накопления усталостного повреждения: $N_{0.5} = \frac{\sigma_{-1D}^{\ \ m} N_G}{\sum \sigma_{aj}^{\ m} p_j}$, циклов, и корректированной гипотезы

$$N_{0.5} = a_P \frac{\sigma_{-1D}^{\ \ m} N_G}{\sum \sigma_{ai}^{\ m} p_i}$$
, щиклов, (1)

где a_P — расчетная корректирующая функция; σ_{aj} — повреждающие (эффективные) амплитуды напряжений, выбранные из разрядов j гистограммы (рис. 1в) по условию $\sigma_{aj} \geq \sigma_{-D}; \, p_j$ — разрядные частоты гистограммы амплитуд (рис. 1в). Медианный ресурс в часах

$$t_{0.5} = \frac{N_{0.5}}{3600n_E}, \text{ vac}, \tag{2}$$

где n_E , Γ ц — средняя частота эффективных амплитуд ($\sigma_{aj} \ge \sigma_{-D}$), участвующих в процессе накопления усталостного повреждения.

2. Определение ресурсов деталей с требуемой вероятностью безотказной работы (ВБР), по вероятностной модели отказов деталей от роста — усталостных трещин, представленной логарифмически-нормальным законом [1-5] с плотностью

вероятности
$$q(t) = \frac{1}{tS_{\lg t_0.5} \sqrt{2\pi}} \text{EXP}[-\frac{(\lg t_{0.5} - \lg t)^2}{2S_{\lg t_0.5}^2}]$$
, и вероятностью безотказной ра-

боты, выраженной через табулированную функцию Лапласа

$$P(t) = \Phi(\frac{\lg t_{0.5} - \lg t}{S_{\lg t_{0.5}}}),\tag{3}$$

где lgt — десятичный логарифм ресурса в часах, соответствующего заданной вероятности безотказной работы P(t); $\lg t_{0.5}$ — десятичный логарифм медианного ресурса в часах, соответствующего вероятности безотказной работы $P(t) = 0.5; S_{\lg t_0.5}$ — среднее квадратическое отклонение логарифма медианного ресурса

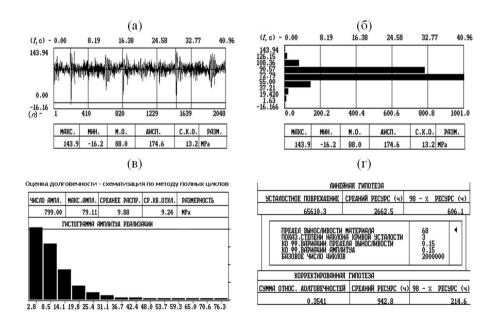


Рис. 1. Визуальные результаты программы расчета ресурса SPD7 ALT: (a) — динамический процесс напряжений и статистические характеристики; (б) — гистограмма ординат; (в) — гистограмма эквивалентных амплитуд напряжений; (г) — Расчеты ресурса в точке измерения напряжений.

$$S_{\lg t_{0.5}} = 0.434 m \sqrt{{V_{\sigma_{-1D}}}^2 + {V_{\sigma_j}}^2},$$

где $V_{\sigma_{-1D}}$ — коэффициент вариации предела выносливости детали, который можно принять [1] в диапазоне 0.05—0.2 (0.15 в программеSPD7 ALT); V_{σ_i} — коэффициент вариации амплитуд напряжений (рис. 1в) (0.15 в программе SPD7 ALT, хотя высокая динамичность нагрузки может давать значительно большие значения).

Аргумент функции Лапласа (3)

$$\frac{\lg t_{0.5} - \lg t}{S_{\lg t_{0.5}}} = u_P,\tag{4}$$

где u_P — квантиль нормального распределения, вычисленный в математических таблицах в функции вероятности безотказной работы P(t).

Из (4) получена функция распределения ресурса в виде, приведенном в [1, 2]

$$\lg t = \lg t_{0.5} - u_P S_{\lg t_{0.5}},\tag{5}$$

которая спрямляется в логарифмически-вероятностных координатах (рис. 2), и позволяет получить значения ресурса с вероятностями в диапазоне 0.5—1.0 графически.

На данном примере (рис. 2): $\lg t_d$ — полученная в опытном образце функция распределения достигнутого ресурса; $t_{0.5}=943$, час — достигнутый ресурс с BБР 0.5 по SPD7 ALT; $t_{0.98}=215$, час — достигнутый ресурс с BБР 0.98 по SPD7 ALT; $t_{0.9998}=71$, час — достигнутый ресурс с требуемой BБР 0.9998; $\lg t_T$ — требуемая функция распределения ресурса, имеющая заданный по T3 ресурс T=10000 часов с требуемой ВБР 0.9998. Цель конструктивной доработки по результатам испытаний — модернизация детали, в результате которой функция достигнутого ресурса переместится в положение требуемого.

В [4] приводится решение (5) относительно t, в результате чего получена функция распределения ресурса в зависимости от заданной ВБР

$$t = t_{0.5} 10^{-u_p S_{\lg t_{0.5}}}, \text{ yacob.}$$
 (6)

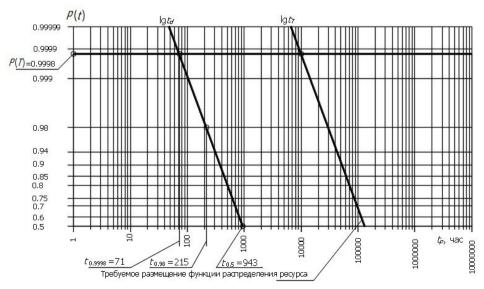


Рис. 2. Графическое представление ресурса в логарифмически-вероятностных координатах.

Функция ресурса в виде (6) позволяет отменить получение ресурса на графике рис. 2 при большом объеме обработки опытных данных.

Со времени опубликования трудов [1, 2] расчеты ресурса внедрились не только в практику экспериментальных исследований, но и в учебные курсы. Это потребовало прояснения всех логических связей и подробностей расчетов, которые должны были быть реализованы в загрузочном модуле программы SPD7 ALT. Логика формулы медианного ресурса $N_{0.5}$ (1) при $a_P = 1$ не вызывает вопросов [5]. Но расчетная корректирующая функция a_P , которая [1, 6] должна учитывать снижение предела выносливости детали при действии больших амплитуд напряжений, в некоторых сочетаниях аргументов дает некорректные результаты, которые по [1, 2] должны обходиться условиями, описанными в формулах (7), (8).

Линейная гипотеза накопления усталостного повреждения определяется [1]: разрушение наступит, когда сумма относительных долговечностей под влиянием каждого цикла напряжений станет равной единице

$$\sum_{j=1}^{r} \frac{n_j}{N} = 1,\tag{7}$$

где n_j — число повреждающих амплитуды напряжений $\sigma_{aj} \ge \sigma_{-D}$, в каждом из разрядов гистограммы; N — общее число циклов до разрушения.

Корректированная гипотеза накопления усталостного повреждения определяется в [1] по результатам экспериментов: разрушение наступит при условии

$$\sum_{j=1}^{r} \frac{n_j}{N} = a_E , \qquad (8)$$

где a_E — сумма относительных долговечностей (экспериментальный корректирующий коэффициент), которая по результатам различных испытаний [1] зафиксирована в диапазоне a_E = 0.1–2.0 при значениях параметров по формуле (7).

Расчетное значение суммы относительных долговечностей предлагается получать [1] из функции, которую можно записать для детали, испытывающей стохастические напряжения в продолжении наработки (блока нагружения), завершающейся отказом детали в виде усталостной трещины

$$a_{P} = \frac{\sigma_{a \max} \xi - 0.5 \sigma_{-1D}}{\sigma_{a \max} - 0.5 \sigma_{-1D}};$$
(9)

$$\xi = \sum_{j=1}^{r} \frac{\sigma_{aj}}{\sigma_{a\max}} \, p_j,\tag{10}$$

где $\sigma_{aj} \geq 0.5\sigma_{-D}$ — учитываемые амплитуды напряжений по разрядам гистограммы j; 0.5 — коэффициент, рекомендованный в [1] по опытным данным, для ограничения нижнего уровня амплитуд, влияющих на процесс накопления усталостного повреждения; r — число разрядов гистограммы; $\sigma_{a\max}$ — максимальная амплитуда блока нагружения; $p_j = \frac{n_j}{N}$ — разрядная частота амплитуд напряжений; n_j — количество учитываемых амплитуд в блоке нагружения по разрядам гистограммы j; N — общее число циклов в блоке нагружения.

Формулы (7), (8) дают основание для представления: если модель повреждающего действия амплитуд напряжений $\sum \sigma_{aj}^{\ \ m} p_j$ в формуле (1) обладает невысокой динамичностью (коэффициент вариации амплитуд близок к единице), значение a_p приближается к единице; если динамичность нагрузки высокая, a_p снижается в пределе до условного минимального значения $a_p = 0.1$ [1], снижая в формуле (1) медианное число циклов до разрушения.

Основная часть. Для проверки этого представления был проведен численный эксперимент, для которого (10) подставлена в (9) и получена формула той же корректирующей функции, в которой представлены ее связи с аргументами

$$a_P = \frac{\sum \sigma_{aj} p_j - 0.5 \sigma_{-1D}}{\sigma_{a \max} - 0.5 \sigma_{-1D}},$$
(11)

при $\sigma_{ai} \ge 0.5\sigma_{-1D}$.

При подстановке аргумента $\sum \sigma_{aj} p_j$ в указанных границах a_p должна быть ограничена по условию [1, 2]: «если по расчету $a_p < 0.1$, принимается $a_p = 0.1$ ».

Представление a_p в виде (11) приводится также в [1]. Из структуры формулы a_p можно рассмотреть некоторые ее свойства: 1) корректирующая функция есть отношение разности средней амплитуды $\sum_{\sigma_{aj}p_j}$ и половины предела выносливости детали $0.5\sigma_{-1D}$ к разности максимальной амплитуды $\sigma_{a\max}$ и половины предела выносливости детали; 2) выражение (11) малочувствительно как к приращениям предела выносливости, так и к его величине при условии $\sigma_{ai} \ge 0.5\sigma_{-1,D}$; 3) так как среднее значение гистограммы стохастического процесса меньше его максимального значения, a_P 1 при случайном нагружении; 4) с ростом среднего значения амплитуд напряжений функция a_P должна расти, приближаясь к единице; 5) так как среднее значение и максимальная амплитуда принадлежат одному распределению стохастического процесса, рост максимальной амплитуды в знаменателе будет сопровождаться ростом среднего в числителе. Поэтому снижение функции a_P к нижней границе в диапазоне $0.1 \le a_p \le 1$ можно представить для гистограммы амплитуд напряжений со смещенной влево модой; 6) пределом роста средней амплитуды является максимальная амплитуда, что имеет место при регулярном нагружении с постоянной амплитудой σ_{amax} , при этом $a_P = 1$, независимо от величин σ_{amax} и $\sigma_{-1,D}$.

Количественные характеристики и их визуализация находятся путем численного эксперимента.

Исходным для формирования блока нагружения принимается стохастический процесс напряжения (рис. 1а). После приложения N циклов (порядка 10^6-10^8) случайных напряжений происходит разрушение детали. Полагаем, что амплитуда напряжения процесса σ_{ai} есть случайная независимая величина, подверженная действию многих случайных факторов. Согласно центральной предельной теореме математической статистики распределение выборочного массива амплитуд стремится к нормальному, когда N стремится к бесконечности.

Дальнейшие шаги по формированию блока нагружения приведены на рис. 3.

На рис. 3: 1) статистический ряд циклов случайных напряжений (рис. 3а), приве-

денных к эквивалентным симметричным значениям амплитуд $\sigma_{ai}=0.5\sigma_{Ri}+\psi_{\sigma}\sigma_{mi}$ (σ_{Ri} и σ_{mi} — размахи и средние значения случайных циклов, ψ_{σ} — коэффициент чувствительности к асимметрии цикла нормальных напряжений); 2) распределения эквивалентных циклов амплитуд напряжений представлено стандартным нормальным законом с математическим ожиданием на линии нулевого значения циклов $f(\sigma_a)=\frac{1}{\sqrt{2\pi}}\operatorname{EXP}(\frac{-\sigma_a}{2})$; 3) наибольшие экстремумы процесса σ_{amax} размещены на границах интервала $\pm 3S$, где S — среднее квадратическое отклонение; 4) размах $\pm 3S$ разделен на шесть разрядов, имеющих значение S, МПа; 5) вариационный ряд эквивалентных циклов напряжений (рис. 3б), поделенных на разряды с ценой S, МПа; 6) формирование гистограммы амплитуд с разрядными частотами p_j , в соответствии

с нормальным законом при условии $\sum_{i=1}^{3} p_{i} = 1$ (табл. 1); 7) трехступенчатая гисто-

грамма блока нагружения (рис. 3в) с ценой разряда S, МПа, в котором числа циклов ступени блока N_i пропорциональны разрядным частотам p_i (табл. 1).

	№ разряда, j	Значение разряда σ_{aj} , МПа (середины разрядов)	Разрядная частота, p_j
	1	0.5 <i>S</i>	0.7042
	2	1.5 <i>S</i>	0.2590
	3	2.5 <i>S</i>	0.0368

Таблица 1. Характеристики гистограммы амплитуд напряжений

На рис. Зв приведено демонстрационное совмещение блока нагружения и кривой выносливости, амплитуды $\sigma_{a1} = 0.5S < \sigma_{-1D}$ и должны исключаться из суммирования в формуле (11).

Максимальная амплитуда напряжения блока принята $\sigma_{a\max} = 3S$ (рис. 16), и значения разрядов так же выражены через S (табл. 1).

Корректирующая функция после выбора функции распределения амплитуд содержит два аргумента: σ_{amax} и σ_{-1D} , диапазоны изменения которых в достаточном количестве наборов должны быть выбраны.

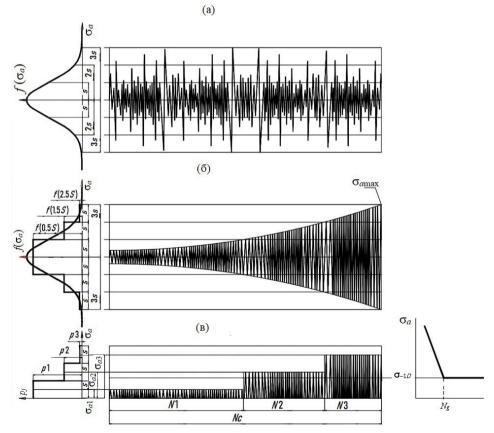


Рис. 3. Формирование гистограммы амплитуд напряжений σ_{aj} блока нагружения, разрушающего деталь после накопления N циклов.

Диапазон пределов выносливости. Наименьший предел выносливости $\sigma_{-1D} = 40 \text{ M}\Pi a$ принят по результатам стендовых исследований штампосварных конструкций [7].

Минимальное расчетное значение предела выносливости детали получено путем деления предела выносливости на максимальный коэффициент концентрации от прессовой посадки [8] материала Сталь 45 по ГОСТ 1050-1988 с пределом текучести $\sigma_T = 650$, МПа при твердости HB270

$$\sigma_{-1D\min} = \sigma_{-1(45)} / K_{\sigma\max} = 380 / 4.6 = 83 \text{ M}\Pi a.$$

Максимальное расчетное значение предела выносливости детали получено путем деления предела выносливости на минимальный коэффициент концентрации от галтели наиболее прочного конструкционного материала Сталь 30ХГТ по ГОСТ 4543-2016 с пределом текучести $\sigma_T=1200$ МПа при твердости НВ415: $\sigma_{-1D\text{max}}=\sigma_{-1(30\text{X}\Gamma\text{T})}/K_{\text{omin}}=650/1.5=438$ МПА.

В этом диапазоне принят ряд $\sigma_{-1,D}$: 40; 83; 133; 183; 233; 283; 333; 383 МПа.

Диапазон нагрузок, задается в виде максимальных амплитуд напряжений. Нижний уровень максимальных амплитуд принят 50 МПа. Верхний уровень максимальных амплитуд для сохранения напряжений в упругой области принят: $\sigma_{amax} = 0.8\sigma_{T(30X\Gamma T)} = 0.8 \cdot 1200 = 960$ МПа. В этом диапазоне приняты ступени максимальных амплитуд σ_{amax} : 50; 150; 250; 350; 450; 550; 650; 750; 850; 950 МПа.

Алгоритм расчетов предполагал на каждом уровне предела выносливости σ_{-1D} выполнение действий: 1) расчеты значений σ_{aj} , p_j для ступеней гистограммы (табл. 1) и их суммирование для подстановки в (11); 2) расчеты рядов a_P (11) для каждого значения ряда σ_{amax} ; 3) расчеты отношений $K = \sigma_{amax}/\sigma_{-1D}$ для каждого значения ряда σ_{amax} .

В этом процессе из суммирования (11) исключались амплитуды напряжений $\sigma_{ai} < 0.5\sigma_{-1D}$, из дальнейшего рассмотрения исключались a_P , полученные при зна-

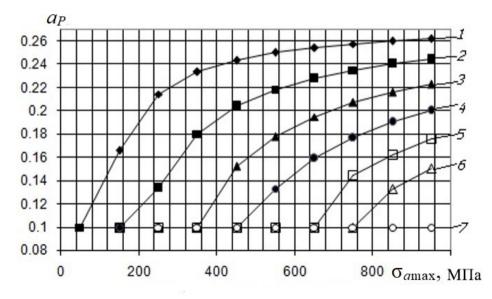


Рис. 4. Корректирующая функция a_P для ряда пределов выносливости детали, МПа: $I-\sigma_{-1D}=40$; $2-\sigma_{-1D}=83$; $3-\sigma_{-1D}=133$; $4-\sigma_{-1D}=183$; $5-\sigma_{-1D}=233$; $6-\sigma_{-1D}=283$; $7-\sigma_{-1D}=333$, на различных ступенях максимальных амплитуд напряжений σ_{amax} . График a_P при значении $\sigma_{-1D}=383$ МПа не приведен, т.к. в пределах шкалы σ_{amax} он повторяет значения графика 7.

чениях $K \le 0.5$, всем значениям $a_P < 0.1$ по величине и по знаку были присвоены значения $a_P = 0.1$. На рис. 4 и 5 приводится графическая интерпретация результатов.

Из графиков (рис. 4) видны тенденции функции a_P : 1) с ростом максимальных амплитуд $\sigma_{a\max}$ при фиксированных пределах выносливости функция a_P растет, асимптотически приближаясь к неопределенному в границах исследования значению $a_P < 1$. Это значение ориентировочно составляет 0.3. Однако для расширения рядов аргументов численного эксперимента пришлось бы пользоваться предполагаемыми характеристиками несуществующих материалов; 2) наращивание $\sigma_{a\max}$ создает признаки ограниченного роста ресурса детали при подстановке a_P в (1), что противоречит исходной предпосылке о необходимости использования корректирующей функции при действии высоких амплитуд; 3) с ростом пределов выносливости σ_{-1D} растет число значений функции $a_P = 0.1$; при значениях ряда пределов выносливости $\sigma_{-1D} = 333$ МПа и более на всех ступенях $\sigma_{a\max}$ получены значения $a_P = 0.1$; 4) наращивание σ_{-1D} сопровождается отклонением a_P к ее нижней границе 0.1 и при подстановке в (1) сокращает расчетный ресурс, нивелируя упрочнение, на которое может рассчитывать разработчик, повышая σ_{-1D} .

Зависимость корректирующей функции a_P от аргумента $K = \sigma_{a\max}/\sigma_{-1D}$ (рис. 5), еще более наглядно проявляет тенденцию a_P к ограниченному росту при наращивании отношений K; тенденция мало зависит от пределов выносливости σ_{-1D} .

Тенденцию a_P к росту при наращивании амплитуд напряжений $\sigma_{a\max}$ мы видим так же в [1]. В колонках «Закон распределения амплитуд: нормальный и равномерный» a_P возрастает с ростом отношения $\sigma_{a\max}/\sigma_{-1D}$, что не расходится со свойствами, проявленными на рис. 4, 5.

Формула (11) идентична формуле (5.33) [1]. Цитируя [1]: «Формула (5.33) была получена на основе анализа ряда экспериментальных данных. Из этих данных следует, что сумма относительных долговечностей α имеет тенденцию к уменьшению при увеличении разницы между наибольшей σ_{amax} и наименьшей σ_{amin} амплитудами

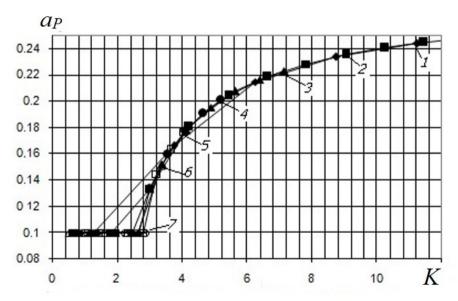


Рис. 5. Корректирующая функция a_P для ряда пределов выносливости детали, МПа: $I-\sigma_{-1D}=40$; $2-\sigma_{-1D}=83$; $3-\sigma_{-1D}=133$; $4-\sigma_{-1D}=183$; $5-\sigma_{-1D}=233$; $6-\sigma_{-1D}=283$; $7-\sigma_{-1D}=333$, на различных ступенях отношений максимальных амплитуд напряжений к пределу выносливости $K=\sigma_{a\max}/\sigma_{-1D}$.

блока ... », и имея в виду, что $\sigma_{amin} = 0.5\sigma_{-1D}$, можно заключить, что упомянутая тенденция a_P к росту в табл. 5.2 [1] также противоречит физическому смыслу корректированной теории накопления усталостного повреждения, как и результаты нашего численного исследования.

В свете приведенной цитаты вызывает вопрос та же тенденция к росту значений экспериментальной суммы относительной долговечности a_E в тех же колонках: не являются ли эти результаты технической ошибкой, допущенной при оформлении таблицы 5.2 [1].

Возвращаясь к расчетной корректирующей функции (11), обратим внимание на трудно воспринимаемый момент суммирования амплитуд $\sum_{\sigma_{aj}} p_j$ при расчете a_P с нижним пределом $\sigma_{aj} \geq 0.5\sigma_{-1D}$ (11), но при получении сумм относительных долговечностей (7), (8) и расчете медианного ресурса (1), суммирование тех же амплитуд $\sum_{\sigma_{aj}} p_j$ и $\sum_{\sigma_{aj}} \sigma_{aj}^m p_j$ проводится с нижним пределом $\sigma_{aj} \geq \sigma_{-1D}$ при использовании одной и той же кривой выносливости с горизонтальной правой ветвью.

Преподавая вопросы проектирования машин по условиям надежности [9, 10] (рис. 2), участвуя в консультациях конструкторских бюро и испытывая безусловное доверие к результатам экспериментальных исследований, представляющих [1–6], основу современных методик расчетов прочности конструкций, мы полагаем, что таблицы экспериментальных сумм относительных долговечностей a_E , привязанных к свойствам материала и характеристикам нагружения, могли бы быть логичной заменой расчетов корректирующей функции (11). Наши надежды на наследников протоколов фундаментальных экспериментов по выносливости материалов и конструкций, на создание по результатам их анализа объективных руководящих технических материалов для разработчиков технических систем.

Выводы. Полученные из эксперимента суммы относительных долговечностей $a_E(8)$ объективно отражают процесс развития усталостного повреждения и, по наблюдениям экспериментаторов [1], имеет тенденцию к уменьшению при увеличении разницы между наибольшей $\sigma_{a\max}$ и наименьшей $\sigma_{a\min}$ амплитудами блока. То есть наличие в процессе нагружения амплитуд напряжений, значительно превосходящих предел выносливости, ведет к разупрочнению образца. Этот физический феномен проявляется в получении суммы $a_E < 1$, и ее снижении при возрастании максимальных амплитуд напряжений.

Расчетная функция a_P (11) при суммировании по гистограмме напряжений стохастического процесса нагружения также дает значения $a_P < 1$. Однако рост аргумента $\sigma_{a\max}$ сопровождается ростом a_P , что не согласуется с гипотезой снижения предела выносливости и числа циклов до разрушения под воздействием высоких амплитуд напряжений.

Наращивание предела выносливости σ_{-1D} сопровождается отклонением корректирующей функции к нижней границе $a_P=0.1$ и при расчете медианного числа циклов до разрушения сокращает расчетный ресурс, что расходится с существующими представлениями о возможности повышения ресурса путем повышения σ_{-1D} .

Эти противоречивые реакции корректирующей функции a_P на приращения аргументов приводят к выводу, что расчеты медианного ресурса (1) приобретут больше объективности, если вместо корректирующей расчетной функции a_P использовать экспериментальные суммы относительных долговечностей a_E (8), привязанных к свойствам материалов и характеристикам нагружения.

Финансирование работы. Работа выполнена в плане инициативной НИР. **Конфликт интересов.** Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Когаев В. П.* Расчеты на прочность при напряжениях, переменных во времени. М.: Машиностроение, 1977. 232 с., ил.
- 2. Расчеты деталей машин на выносливость в вероятностном аспекте. Методические указания / Под ред. А. П. Гусенкова, И. М. Петровой, И. В. Гадолиной. М.: МЦНТИ, 1991. 85 с.
- 3. *Когаев В. П., Махутов Н. А., Гусенков А. П.* Расчеты деталей машин и конструкций на прочность и долговечность: Справочник. М.: Машиностроение, 1985. 224 с., ил.
- 4. *Маньшин Ю. П., Маньшина Е. Ю.* Приближенная оценка ресурса детали, обеспечивающая ее требуемый ресурс с заданной вероятностью безотказной работы // Вестник машиностроения. 2017. № 12. С. 20.
- 5. Степнов М. Н., Гиацинтов Е. В. Усталость легких конструкционных сплавов. М.: Машиностроение, 1973. 317 с.
- 6. *Петрова И. М., Гадолина И. В.* Оценка циклической прочности конструкционных сталей в области длительной долговечности // Вестник машиностроения. 2005. № 10. С. 23.
- 7. *Махутов Н.А.* Сопротивление элементов конструкций хрупкому разрушению. М.: Машиностроение, 1973. 200 с.
- 8. Детали машин. Расчет и конструирование: Справочник. Т. 1 / Под ред. Н. С. Ачеркана. М.: Машиностроение, 1968. 440 с.
- 9. *Пронников А. С.* Параметрическая надежность машин. М.: Изд-во МГТУ им. Баумана, 2002. 560 с.
- 10. Дальский А. М. Технологическое обеспечение надежности высокоточных деталей машин. М.: Машиностроение, 1975. 225 с.