НАДЕЖНОСТЬ, ПРОЧНОСТЬ, ИЗНОСОСТОЙКОСТЬ МАШИН И КОНСТРУКЦИЙ

УДК621.86 + 06

ТРИБОЛОГИЧЕСКИЕ И ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА ВЫСОКОЭНТРОПИЙНЫХ СПЛАВОВ CrMnFeCoNi, CuCrMnFeCoNi, ИХ СТАБИЛЬНОСТЬ И ПРОГНОЗ СТРУКТУРЫ

© 2024 г. В. И. Колесников 1 , А. А. Гуда 1 , И. В. Колесников 1 , С. А. Гуда 1 , К. Н. Политыко $^{1,\ *}$, Ю. А. Абзаев 2

¹ Ростовский государственный университет путей сообщения, Ростов-на-Дону, Россия ² Томский государственный архитектурно-строительный университет, Томск, Россия *e-mail: politykokirill@yandex.ru

Поступила в редакцию 16.04.2024 г. После доработки 13.06.2024 г. Принята к публикации 15.06.2024 г.

Высокоэнтропийные покрытия на основе 3d-металлов обладают уникальным сочетанием прочности и пластичности в широком температурном диапазоне, и могут быть получены по технологии вакуумного ионно-плазменного магнетронного напыления. Однако модельные расчеты термомеханических свойств таких сплавов осложнены отсутствием в литературе стабильных и равновесных решеток с полной структурной информацией. В статье реализован прогноз стабильности фаз эквиатомного высокоэнтропийного покрытия CrMnFeCoNi методом обратных выпуклых оболочек, определены термодинамические, механические свойства. Обнаружено, что вплоть до комнатной температуры к стабильным фазам относится также среднеэнтропийный, 4-х элементный сплав состава MnFeCoNi.

Ключевые слова: CrMnFeCoNi, MnFeCoNi, высокоэнтропийные сплавы, механические, трибологические, термодинамические свойства, стабильность высокоэнтропийных сплавов

DOI: 10.31857/S0235711924050038, **EDN:** NUCPIK

Использование функциональных покрытий в тяжелонагруженных трибосистемах в авиации, на транспорте, в машиностроении характеризуется повышенным вниманием к проблемам трения и износа. Актуальность этого обусловлена безопасностью и надежностью работы узлов трения, а также стремлением к экономии дорогостоящих материалов для узлов трения, в которых рабочей зоной является поверхность трибосопряжения. Эти проблемы можно решить путем нанесения вакуумных ионно-плазменных износостойких покрытий на контактные поверхности. Объектом исследований были выбраны высокоэнтропийные сплавы (ВЭС) — до настоящего времени недостаточно изученный класс материалов. Исследовательские усилия были направлены не только на изучение физико-механических и трибологических характеристик ВЭС, но и их стабильности в широком температурном диапазоне. Роль температуры в механизме трения и износа является определяющей и характеризующей прочностные и деформационные свойства материалов.

Высокоэнтропийные материалы с эквиатомным содержанием компонентов характеризуются высокой конфигурационной энтропией, низкой атомной диффузией, решеточными искажениям и формированием простых кубических решеток (ГЦК, ОПК, ГПУ) [1-9]. В работе [1] впервые было показано, что CoCrFeMnNi является однофазным и характеризуется заметной микроструктурной стабильностью в течение длительного времени. Обнаружено, что при растяжении предел текучести, предел прочности и удлинение до разрушения одновременно увеличиваются при понижении температуры от комнатной и до 77 К. Установлена высокая вязкость разрушения [2]. Особенности мехсвойств CoCrFeMnNi связывают, как правило, с особенностями упругих характеристик сплава, медленной кинетикой диффузий при повышенных температурах. Интерес к ВЭС также связан с исключительными прочностными характеристиками при высоких температурах, пластичностью, ударной вязкостью при криогенных температурах [7]. В связи с отсутствием кристаллографической базы ВЭС в литературе, существенно осложнено изучение структурного состояния ВЭС методом Ритвельда [10, 11], а также модельных термодинамических, механических свойств ВЭС различного элементного состава. В литературе отсутствуют сведения о ВЭС CoCrFeMnNi с полной кристаллографической информацией: пространственной группой, координатами атомов, параметрами решеток, занятости узлов и т.д. Как следствие, невозможно исследование термодинамических, механических свойств материалов. Представляется актуальным идентификация структур ВЭС — CrMnFeCoNi, и на их основе изучение термодинамических, механических свойств при конечных температурах. Прогноз равновесных, стабильных решеток однофазного сплава CrMnFeCoNi можно реализовать методом обратной выпуклой оболочкой [12] (InverseHubWeb) в интервале температур $T = 300 - T_{\rm melt}$ K, эволюционным кодом USPEX [13, 14] с интерфейсом VASP, равновесные состояния в коде vaspkit [15]. Последующие ab intio расчеты структурных, термодинамических характеристик решеток в коде Phonopy [16], Vasp на суперкомпьютере Blochi.

Целью статьи является прогноз структурного и равновесного состояния, стабильности ВЭС — CrMnFeCoNi с простой кубической (ПК) решеткой. Анализ энергии, энтропии смешения двойных сплавов вблизи температуры плавления в рамках модели Миедема, а также энтропии смешения 5-ти элементного состава CrMnFeCoNi. Прогноз стабильных фаз CrMnFeCoNi эволюционным методом, температурных интервалов стабильности InveseHubWeb кодом в интервале температур $T = 300 - T_{\rm melt}$ К. Исследование термодинамических, механических свойств ВЭС CrMnFeCoNi с ПК решеткой в широком температурном интервале, а также физико-механических и трибологических свойств покрытия CuCrMnFeCoNi.

Материалы, методы исследований. Появление нового класса материалов — высокоэнтропийных сплавов (ВЭС) объясняется тем, что если сформировать много-компонентную систему в виде однофазного твердого раствора замещения, то его конфигурационная составляющая энтропии будет на порядок выше остальных составляющих. При этом энергия Гиббса такой системы становится минимальной и придает системе высокую термодинамическую устойчивость. Причем, чем большее число компонентов n замешано в растворе, тем выше устойчивость системы (минимальным набором считается n=4-5). При этом сплав может считаться высокоэнтропийным, если он удовлетворяет следующим критериям: разница атомных размеров (атомных радиусов компонентов δ должна находиться в пределах $0 \le \delta \le 8.5\%$); энтальпия смешения ΔH_{mix} должна находиться в пределах: $7 \le \Delta H_{\text{mix}} \le 22 \text{ кДж/моль}$; энтропия смешения ΔS_{mix} в пределах: $11 \le \Delta S_{\text{mix}} \le 19.5 \text{ Дж/(K·моль)}$. ΔS_{mix} определяется по Больцману: $\Delta S_{\text{mix}} = -R \sum_{i=1}^{n} c_i \ln c_i$, при эквиатомной концентрации компонентов $C_i = 1/n$ и $\Delta S_{\text{mix}} = R \ln(n)$, где R = 8.314 Дж/(K·моль) — универсальная газовая постоянная. С ростом количества компонентов n эквиатомного состава энтропия

смешения $\Delta S_{\rm mix}$ — растет: так при n=5, $\Delta S_{\rm mix}=13.8$ Дж/(К·моль); при n=10, $\Delta S_{\rm mix}=19$ Дж/(К·моль).

Для усиления трибологического акцента покрытия в состав порошковых мишеней CrMnFeCoNi была введена медь: CuCrMnFeCoNi. Таким образом, состав реальных мишеней, с которых осуществлялось напыление покрытий на образцы, соответствовал эквиатомной концентрации компонентов системы CuCrMnFeCoNi. При этом увеличение количества компонентов до 6 повышает показатель энтропии смешения до значения $\Delta S_{\text{mix}} = 15 \text{ Дж/(K·моль)}$ и исследуемая система становится еще более высокоэнтропийной.

Нанесение покрытий системы CuCrMnFeCoNi осуществлялось в режиме магнетронного напыления с помощью вакуумной установки BRV600 (производитель OOO «БелРосВак», г. Минск, Беларусь) оснащенной мощным ионным источником. Покрытие наносилось на образцы из конструкционной стали 40XH2MA. Физико-механические характеристики стали 40XH2MA после закалки и низкого отпуска с мартенситной структурой составляют $H = 5.2 \, \Gamma \Pi a$; $E = 200 \, \Gamma \Pi a$; H/E = 0.026 — сопротивление упругой деформации; $H^3/E^2 = 0.00352 \, \Gamma \Pi a$ — сопротивление пластической деформации.

В магнетроне были использованы мишени, изготовленные методом порошковой металлургии. Образцы из стали 40XH2MA выполненные в виде пластины размерами $50\times30\times5$ мм, перед стадией нанесения покрытия подверглись ионному травлению с помощью Ar+ при давлении в камере ~0.7 Па, температуре ~400°С и напряжении смешения 1000 В в течение пяти минут.

Для исследования физико-механических образцов в нано- и микромасштабе применялась измерительная платформа «NanoTest 600». По методу непрерывного индентирования [17] определяли модуль упругости E и твердость H, а также H/E и H^3/E^2 . При измерениях в микродиапазоне (нагрузка менее 2H— глубина отпечатка более 0.2 мкм) применялся четырехгранный индентор Виккерса, для работы в нанодиапазоне (глубина отпечатка не более 0.2 мкм) — трехгранный индентор Берковича. Условия испытаний и обработка полученных данных осуществлялась в соответствии с ГОСТ 8.748—2011 [18].

Трибологические испытания покрытий проводились на машине трения TRB по схеме «штифт—пластина» либо при возвратно-поступательном движении пластины (образец с покрытием) с частотой 10 Гц и амплитудой 800 мкм, либо при радиальном движении по окружности диаметром 6 мм. Нормальное усилие на штифте варьировалось дискретно и составляло 1.5 и 10 Н. Контробразец представлял собой закрепленный в штифте шарик диаметром 6.35 мм из Кермета (твердого сплава) WC—Co. В силу того, что шарик неподвижен в штифте, испытания относятся к типу трения скольжения. Продолжительность испытания составляла 50000 циклов. Определяли такие трибологические параметры, как коэффициент трения μ , интенсивность объемного износа образца J и контртела JK, а также длину пути (дорожки трения) L, пройденного образцом до разрушения покрытия и измеряемого в метрах.

Исследование стабильности сплава CrMnFeCoNi эквиатомного состава можно реализовать методом InverseHubWeb [12]. В InverseHubWeb проводятся аb intio расчеты свободной энергии структур на основе кластерного метода [12]. Стабильность фаз известного эквиатомного состава определяется на основе расчетов энергии формирования и смешения в выпуклых оболочках одиночных ВЭС на базе эталонов Material Project. Детали оценок обсуждаются в работе [12]. В методе InverseHubWeb резудьтаты представляются на плоской 2D-диаграмме с осями энергия образования и смешения (рис. 1), уровень последней определяется движущей силой фазового разделения ВЭС на низкокомпонентные реактанты. Сплавы с энергией смешения, превышающей нулевой уровень относятся к квазистабильным структурам. Вершинами многомерных выпуклых оболочек являются стабильные фазы (реактанты вы-

пуклой оболочки), или интерметаллические сплавы из кристаллографической базы Material Project. Состав фаз на качественном уровне характеризуется формой и цветовой градацией маркеров, а стрелки и их ширина свидетельствуют о направлении реакций соседних сплавов и долю фаз. С формой маркеров связано число компонент в фазе. Стабильность сплавов определяется выражением [12]

$$\Delta G = \Delta H - TS,$$

$$\Delta S_{ss} = k_B \sum_{i=1}^{n} x_i \ln x_i = R \ln(n),$$
(1)

где G— свободная энергия Гиббса; ΔH — энтальпия смешения; ΔS_{ss} — энтропия смешения твердых растворов; x_i — молярная доля i-го элемента в ВЭС. С учетом разделения на низкомпонентные реактанты

$$\Delta S_{ss} = R \ln \left(\frac{n}{n-1} \right).$$

Энтальпия ΔH n-атомной смеси равна

$$\Delta H = \sum_{i} \sum_{i>j} \Omega_{i,j} x_i x_j = \sum_{i} \sum_{i>j} \Omega_{i,j} \left(\frac{1}{n}\right)^2, \tag{2}$$

где $\Omega_{i,j}$ — бинарное взаимодействие, и для эквиатомного состава определяется выражением [18]

$$\Omega_{i,j} = 4 \left[E_{ij}^{SQS} - \frac{1}{2} \left(E_i - E_j \right) \right], \tag{3}$$

где E^{SQS}_{ij} — энергия бинарной решетки, определяемой из первых принципов в рамках кластерного приближения в ATAT [19]; E_i , E_j — энергии решеток компонентов. Результаты расчетов стабильности по формуле (1) приведены на рис. 1. Стабильность сплава CrMnFeCoNi оценивалась в температурном интервале $\Delta T = 300-1795$ К. Энтальпия образования, смешения оказываются в целом отрицательными. Однако энтальпия смешения при температурах ниже ~800 К находится вблизи нулевого уровня, и, следовательно, 5-ти элементный сплав CrMnFeCoNi склонен к релаксации. Поиск решеток CrMnFeCoNi с полной структурной информацией можно реализовать эволюционным методом USPEX [13, 14]. В статье в коде USPEX исследовались эталоны эквиатомного фиксированого состава CrMnFeCoNi и MnFeCoNi. Прогноз был реализован при следующих условиях: доля поколений, генерируемая из случайных структур, и обусловленная наследственностью составляла 0.3 и 0.5 соответственно, генерация из мутаций -0.2. Доля текущего поколения, которая использовалась для генерации следующего поколения, была равной 0.6. В каждой генерации были рассмотрены популяции из 30 атомов, начальное число было также равно 30 атомам. Расчеты производились с шестью шагами оптимизации в рамках функционала электронной плотности в градиентном псевдопотенциале электронной плотности (GGA) в коде VASP. Полная энергия решеток определялась при 0 К. Расчеты орбиталей электронных состояний, распределение одноэлектронной плотности и энергии основного состояния проводились самосогласованным образом. Волновые функции валентных электронов атомов фаз разных поколений анализировались в базисе плоских волн с радиусом обрезания кинетической энергии в 330 эВ. В этом случае сходимость полной энергии составляла $\sim 0.5 \cdot 10^{-6}$ эВ/атом. Равновесное состояние, температурные зависимости термодинамических, механических свойств рассчитывались в vaspkit [15], phonopy [16] с интерфейсом Vasp. Входными данными были решетки CrMnFeCoNi, MnFeCoNi как в исходном состоянии, так и после объемного деформирования.

Результаты и обсуждение.

- По физико-механическим характеристикам покрытия CuCrMnFeCoNi следует отметить, что уровень его прочностных свойств находится на уровне закаленной стали 40ХН2МА с достаточно высоким сопротивлением как упругой (в 1.5 раза), так и пластической деформации (в 2.5 раза), что существенно отражается на адгезионных свойствах покрытие-подложка.
- Использование магнетронного способа нанесения покрытия CuCrMnFeCoNi по сравнению с другими ВЭС покрытиями позволило: 1) увеличить скорость осаждения покрытий; 2) получать покрытия большой толщины (h = 10-15 мкм); 3) обеспечить при заданных условиях трибологических испытаний (V = 1 мм/c, N = 5 H) высокую износостойкость и малый коэффициент трения ($\mu = 0.07 - 0.1$).
- 3. Для оценок энтальпии $H_{\rm mix}$ ВЭС CrMnFeCoNi необходимо воспользоваться следующими двойными сплавами с кубической решеткой: AlNi, AlNb, AlTi, AlCo, NiNb, NiTi, NiCo, NbTi, NbCo, TiCo. Температура плавления двойных сплавов оценивалась по формуле

$$T_{\text{melt}} = \sum c_i T_i,$$

где T_i — температура плавления элементов сплава CrMnFeCoNi. Для металлов Cr, Mn, Fe, Co, Ni, температуры равны $T_{\rm melt}$ = 2136, 1519, 1811, 1768, 1728 K соответственно. Эффективные температуры плавления CrMnFeCoNi, MnFeCoNi найденные по формуле (2) равны $T_{\text{melt}} = 1792$, 1706 К соответственно. Температуры плавления двойных сплавов приведены в табл. 1. На основе полученных значений $T_{\rm melt}$ и известных элементов была определена энтальпия смешения, а также энтропийный вклад в свободную энергию двойных сплавов в рамках модели Miedema [20], результаты расчетов приведены в табл. 1. Необходимо отметить, что не все из списка двойных сплавов оказываются стабильными. В частности, к нестабильным сплавам относятся CrMn, MnFe. Методом InverseHubWeb было установлено, что однофазный ВЭС — CrMnFeCoNi является стабильным ниже температуры плавления. Интересным оказывается то, что сплав MnFeCoNi также стабилен, причем вплоть до $T \approx 300 \text{ K}$. Результаты стабильности ВЭС — CrMnFeCoNi представлены на рис. 1.

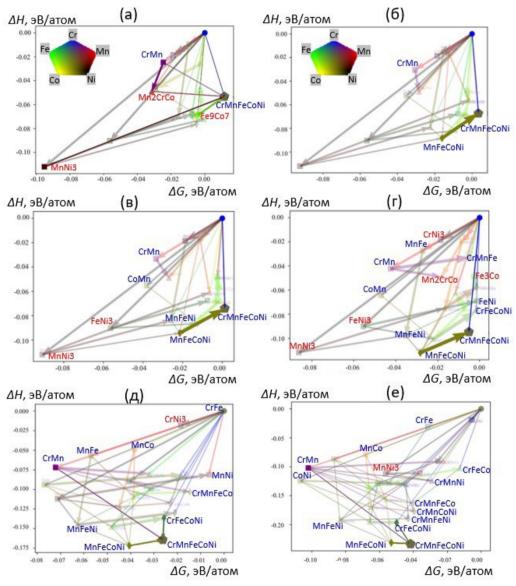

В статье поиск решеток CrMnFeCoNi, а также MnFeCoNi был реализован эволюционным методом в USPEX [13, 14]. В процессе прогноза было обнаружено около 300 и 420 эталонов фиксированных составов CrMnFeCoNi, CrMnFeCoNi соответственно, из которых были выбраны структуры ортогонального класса с пространственными группами 47 и 25 соответственно. После конвертирования до P1, оценок

Таблица 1. Эффективная температура плавления двойных сплавов							
Двойные сплавы	$T_{\rm melt}$, K	ΔH , кДж/моль	ΔS , кДж/моль				
CrMn	1827.5	2.139	10.54				
CrFe	1973.5	-1.444	11.37				
CrCo	1952	-4.305	11.25				
CrNi	1932	-6.387	11.13				
MnFe	1665	0.286	9.59				
MnCo	1643.5	-4.929	9.469				
MnNi	1623.5	-7.739	9.354				
FeCo	1789.5	-0.5491	10.31				
FeNi	1769.5	-1.47	10.2				
CoNi	1748	-0.206	10.7				

энергии решеток в коде CASTEP, детали кода обсуждаются в [21], были выделены решетки эквиатомного состава CrMnFeCoNi, MnFeCoNi с наименьшей энергией, для которых дополнительно определялось равновесное состояние в коде vaspkit [15]. Представленные решетки в табл. 1 соответствуют стабильным и равновесным состояниям.

Необходимо отметить также, что для всех ПК решеток известны координаты атомов, однако вследствие большого объема эти данные в статье не приводятся. В табл. 2 приведены энергии равновесных решеток, вычисленные в коде CASTEP.

В статье было проведено исследование энергии ПК решеток в зависимости от вариации объема на основе уравнения состояния. Термодинамическое уравнение

Рис. 1. Обратная выпуклая оболочка ВЭС — CrMnFeCoNi при разных температурах: (a) — T = 700 K; (б) — T = 800 K; (в) — T = 850 K; (г) — T = 1000 K; (д) — T = 1500 K; (e) — T = 1795 K.

2. 0.1pjjp2.0 impunio.1p2. 2.0.0									
Фаза	a, Å	b, Å	c, Å	alpfa	beta	gamma	<i>V</i> , Å ³	<i>F</i> , эВ	Space group
CrMnFeCoNi	4.1853	4.1853	4.1853	90	90	90	73.315	-6375.86	<i>P</i> 1,
MnFeCoNi	3.4759	3.4759	3.4759	90	90	90	41.997	-3915.67	Triclinic

Таблица 2. Структурные параметры ВЭС

состояния (EOS), связывающее внутреннюю энергию, давление и объем решетки, играет важную роль в предсказании структурных, термодинамических свойств материалов при высоких температурах, которое позволяет, в частности, поиск и определение равновесного состояния решетки. На первоначальном этапе в статье было использовано уравнение в формулировке Vinet [15]

$$F=F_0+\frac{BV_0}{C^2}\Biggl[1-\Biggl(1+C\Biggl(V^{\frac{1}{2}}-1\Biggr)\Biggr)e^{C\Biggl(V^{\frac{1}{2}}-1\Biggr)}\Biggr],$$
 где $V=\frac{V}{V_0}$; V_0 и F_0 — объем и энергия при нулевом давлении соответственно. Значе-

где $V = \frac{V}{V_0}$; V_0 и F_0 — объем и энергия при нулевом давлении соответственно. Значения объемного модуля упругости B и его производная по давлению B_p были найдены после аппроксимацией (3) зависимости энергии от объема решетки, параметры аппроксимации приведены в табл. 3.

В рамках квазигармонического приближения (QHA) свободная энергия Гельмгольца записывается в виде

Таблица 3. Параметры аппроксимации в модели Vinet	Таблица 3. Па	раметры апп	роксимации	в модели	Vinet
--	---------------	-------------	------------	----------	-------

Фаза	V_0 , Å ³	<i>F</i> ₀ , эВ	B_0 , ГПа	B'_p
CrMnFeCoNi	73.316	-31.575	129.583	2.249
MnFeCoNi	41.996	-29.128	254.813	2.745

$$F(V,T) = E_0(V) + F_{\text{vib}}(V,T) + F_{\text{elec}}(V,T),$$

где E_0 — энергия решетки при 0 K; $F_{\rm vib}$, $F_{\rm elec}$ — фононный и электронный вклады в свободную энергию; V — текущий объем решетки. Фононный вклад в свободную энергию определяется из фононной плотности состояний

$$F_{\mathrm{vib}}\left(V,T\right) = k_{B}T\sum\nolimits_{q,\lambda}\ln\{2\sin h\left(\frac{\hbar\omega_{q,\lambda}\left(V\right)}{2k_{B}T}\right)\},\label{eq:Fvib}$$

где k_B , h и $\omega=2\pi v$ — постоянная Больцмана, постоянная Планка и частота соответственно. Суммирование проводится по всем фононным ветвям и волновым векторам 1-й зоны Бриллюэна. Электронный вклад $F_{\rm elec}$ при низких температурах, как правило, незначителен, поэтому его коррекция не производилась. Фононная удельная теплоемкость определяется по формуле

$$C_{\rm v}^{\rm vib} = \sum_{q,\lambda} k_B \cosh^2 \left(\frac{\hbar \omega_{q,\lambda} (V)}{2k_B T} \right)^2.$$

Если известна температурная зависимость расширения решетки $\alpha(T)$, или параметр Грунайзена, тогда на основании уравнения EOS возможно вычислить различные термодинамические характеристики. В коде Phonopy используется уравнение EOS в формулировке Берча—Мурнагана [16]

$$F(V) = F_{eq} + \frac{BV_0}{B_p} \left[\frac{\binom{V_{eq}}{V}^{B_p}}{B_p - 1} - 1 \right] - \frac{BV_0}{B_p - 1},$$

где F_0 , B, V_0 и B_p — аппроксимирующие параметры. Параметр Грунайзена γ равен производной динамической матрицы по объему, зависящей также от волновых векторов известных фононных ветвей в первой зоне Брюллиена. Температурная зависимость $\gamma(T)$ позволяет предсказать параметр $\alpha(T)$, а также удельную теплоемкость C_v . Результаты расчетов термодинамических, механических характеристик ВЭС — CrMnFeCoNi, MnFeCoNi приведены на рис. 2 и 3.

Термодинамические свойства ВЭС — CrMnFeCoNi, MnFeCoNi (рис. 2г, 3г) были рассчитаны в модели Дебая, а остальные свойства в рамках QHA приближения (учтено температурное расширение решеток). Результаты не были нормированы на число атомов. Из полученных результатов следует, что с ростом температуры энергия решетки в равновесном состоянии в ВЭС — CrMnFeCoNi, MnFeCoNi значительно снижа-

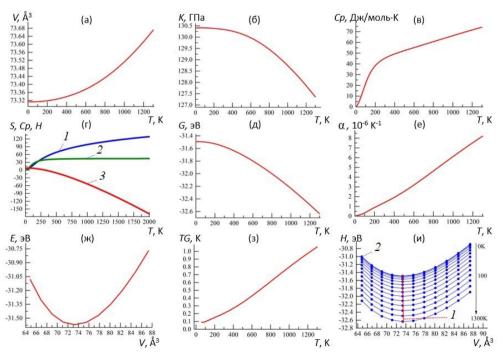
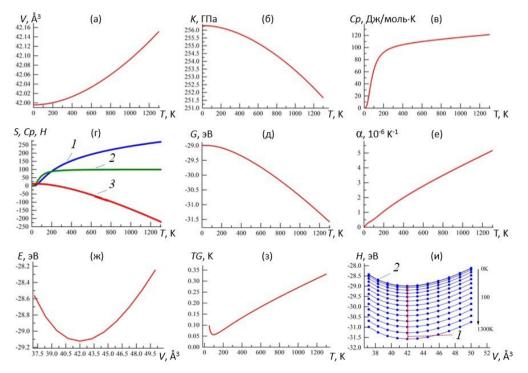



Рис. 2. Термомеханические свойства ВЭС — CrMnFeCoNi в зависимости от температуры: (а) — объем решетки; (б) — объемный модуль упругости; (в) — удельная теплоемкость; (г) — термодинамические свойства: 1— энтропия S, Дж/К/моль, 2 — фононная удельная теплоемкость C_v, Дж/К/моль, 3 — энтальпия H, кДж/моль; (д) — энергия Гиббса; (е) — коэффициент термического расширения; (ж) — энергия элементарной ячейки в зависимости от объема; (з) — коэффициент Грюнайзена; (и) — свободная энергия решетки от объема при разных температурах: равновесная свободная энергия 1 и зависимость свободной энергии от объема при различных температурах 2.

ется. Заметно возрастают объем решетки, коэффициент термического расширения, объемный модуль упругости, параметр Грюнайзена, в котором наблюдается слабое отклонение от линейной зависимости. Удельная теплоемкость существенно возрастает в исследуемом температурном интервале, причем наиболее интенсивный рост обнаружен в интервале до ~300 K. В сплаве MnFeCoNi интенсивность роста, оказывается существенно ниже, чем в BЭС — CrMnFeCoNi при высоких температурах. Значительно уменьшается свободная энергия Гиббса с ростом температуры. Вызывают интерес температурные зависимости энтропии и объемных модулей упругости. В 5-элементном ВЭС энтропия примерно в два раза меньше, чем в 4-х элементном сплаве. В 4-элементном ВЭС — MnFeCoNi объемный модуль ($B \sim в 2$ раза) существенно превышает значение для ВЭС — CrMnFeCoNi при всех исследованных температурах. Нормированные свободные энергии решеток BЭС — CrMnFeCoNi, MnFeCoNi в температурном интервале $T \approx 0-800$ К изменяются в пределах $F \approx -6.3 - (-6.5), -7.4 - (-7.63)$ эВ/атом соответственно. Ab initio расчеты свободных энергий свидетельствуют, о том что равновесные BЭС — CrMnFeCoNi, MnFeCoNi относятся к квазистабильным и стабильным сплавам, однако CrMnFeCoNi склонен к релаксации в направлении среднеэнтропийного состава, а MnFeCoNi, вследствие более высоких значений объемного модуля упругости предпочтителен на практике. Детальный анализ механических свойств в коде vaspkit, показал, что MnFeCoNi с гранецентрированной решеткой относится к высокопрочным материалам. Про-

Рис. 3. Термомеханические свойства ВЭС — MnFeCoNi в зависимости от температуры: (а) — объем решетки; (б) — объемный модуль упругости; (в) —удельная теплоемкость; (г) — термодинамические свойства: I — энтропия S, Дж/К/моль, 2 — фононная удельная теплоемкость C_v , Дж/К/моль, 3 — энтальпия H, кДж/моль; (д) — энергия Гиббса; (е) — коэффициент термического расширения; (ж) — энергии элементарной ячейки в зависимости от объема при 0 K; (з) — коэффициент Грюнайзена; (и) — равновесная свободная энергия I и зависимость свободной энергии от объема при различных температурах 2.

странственное распределение атомов в решетке сплавов MnFeCoNi и CrMnFeCoNi представлен на рис. 4.

Из расчетов упругих констант из первых принципов, представленных в табл. 4, следует, что объемный модуль упругости, модуль Юнга и сдвига как для монокристаллов, так и поликристаллов характеризуются высокими значениями.

		9			
394.192	210.412	198.504	0.000	0.000	0.000
210.412	390.368	171.549	0.000	0.000	0.000
198.504	171.549	389.176	0.000	0.000	0.000
0.000	0.000	0.000	153.476	0.000	0.000
0.000	0.000	0.000	0.000	200.852	0.000
0.000	0.000	0.000	0.000	0.000	218.400

Таблица 4. Тензор упругих констант C_{ii} ВЭС MnFeCoNi (ГПа)

ВЭС MnFeCoNi механически стабилен, и склонен к хрупкому разрушению. Механические свойства ВЭС — MnFeCoNi представлены в табл. 5.

Пополеть		Поликристаллы				
Параметр	Минимум	Максимум	Анизотропия	Voigt	Reuss	Hill
Объемный модуль (ГПа)	236.117	300.622	1.273	259.41	258.791	259.099
Модуль Юнга (ГПа)	245.093	457.864	1.868	385.88	348.772	367.494
Модуль сдвига (ГПа)	90.432	218.392	2.415	154.10	136.732	145.415
Коэф. Пуассона	-0.011	0.503	-45.404	0.25	0.275	0.264

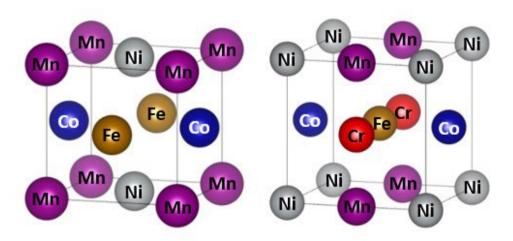


Рис. 4. Пространственное распределение атомов в решетке: (a) — MnFeCoNi; (б) — CrMnFeCoNi.

Для сплава выполнены следующие условия механической стабильности:

$$C_{11}, C_{44}, C_{55}, C_{66}$$
 — знакоположительны; $C_{11} \cdot C_{22} > C_{12}^2;$ $C_{11} \cdot C_{22} \cdot C_{33} + 2C_{12} \cdot C_{13} \cdot C_{23} - C_{11} \cdot C_{23}^2 - C_{22} \cdot C_{13}^2 - C_{33} \cdot C_{12}^2 > 0.$

В статье были проведены оценки микротвердости в рамках модели Оганова [22]. Было обнаружено, что микротвердость по Викерсу равна 17.56 ГПа.

Заключение. Таким образом, методами, используемыми в Inverse HubWeb, USPEX, vaspkit, phonopy было установлено, что BЭС — CrMnFeCoNi относятся к стабильным и равновесным структурам. Методом Inverse HubWeb был обнаружен также среднеэнтропийный, однофазный ВЭС — MnFeCoNi, интервал стабильности которого составляет $\Delta T \approx \left(300-T_{\rm melt}\right)$ К. Интервал стабильности для CrMnFeCoNi составляет $\Delta T \approx \left(800-T_{\rm melt}\right)$ К. На основе кристаллографической базы ВЭС — CrMnFeCoNi, MnFeCoNi в коде USPEX были выделены ПК ГЦК, ОЦК равновесные решетки с P1. В рамках QHA-модели установлено, что среднеэнтропийный равновесный ВЭС — MnFeCoNi обладает меньшей удельной энергией при конечных температурах по сравнению с CrMnFeCoNi, он механически стабилен и обладает более высокими прочностными свойствами, которые практически в 1.5-2.0 раза превышают соответствующие значения для CrMnFeCoNi. Добавление Си в состав порошковых мишеней CrMnFeCoNi значительно усиливает трибологические характеристики — снижение коэффициента трения и повышение износостойкости.

Финансирование работы. Работа выполнена при финансовой поддержке Российского Научного Фонда (проект № 21-79-30007).

Конфликт интересов. Авторы заявляют, что у них нет конфликта интересов.

Информация о вкладе авторов. Изучение и анализ физико-механических и трибологических характеристик экспериментальных высокоэнтропийных вакуумных ионно-плазменных покрытий выполнено В. И. Колесниковым, И. В. Колесниковым, К. Н. Политыко. Исследование стабильности высокоэнтропийных покрытий проведено Ю. А. Абзаевым. Прогноз структур и их валидация осуществлены А. А. Гудой, В. И. Колесниковым, С. А. Гудой.

СПИСОК ЛИТЕРАТУРЫ

- 1. Cantor B., Chang I., Knight P., Vincent A. J.B. Microstructural development in equiatomic multicomponent alloys // Materials Science and Engineering A. 2023. V. A375–377. P. 213. https://doi.org/10.1016/j.msea.2003.10.257
- Gludovatz B., Hohenwarter A., Catoor D., Chang E. H., George E. P., Ritchie R. O. A fractureresistant high-entropy alloy for cryogenic applications // Science. 2014. V. 345 (6201). P. 1153. https://doi.org/10.1126/science.1254581
- 3. Otto F., Dlouhý A., Pradeep K. G., Kubenov M., Raabe D., Eggeler G., George E. P. Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at inter-mediate temperatures // Acta Materialia. 2016. V. 112. P. 40. http://dx.doi.org/10.1016/j.actamat.2016.04.0051359—64542016
- Laplanche G., Gadaud P., Horst O., Otto F., Eggeler G., George E. P. Temperature dependencies of the elastic moduli and thermal expansion coefficient of an equiatomic, single-phase CoCrFeMnNi high-entropy alloy // J. of Alloys and Compounds. 2014. V. 623. P. 348. http://dx.doi.org/10.1016/j.jallcom.2014.11.061
- Sahlberg M., Karlsson D., Zlotea C., Jansson C. U. Superior hydrogen storage in high entropy alloys // Scientific Reports. 2016. V. 6. P. 36770. https://doi.org/10.1038/srep36770
- Senkov O.N., Wilks G.B., Scott J. M., Miracle D. B. Mechanical properties of Nb₂₅Mo₂₅Ta₂₅W₂₅ and V₂₀Nb₂₀Mo₂₀Ta₂₀W₂₀ refractory high entropy alloys // Intermetallics. 2011. V. 19 (5). P. 698. https://doi.org/10.1016/j.intermet.2011.01.004

- 7. *Li Z.*, *Pradeep K. G.*, *Deng Y.*, *Raabe D.*, *Tasan C. C.* Metastable high-entropy dual-phase alloys overcome the strength—ductility trade-off // Nature. 2016. V. 534. P. 227. https://doi.org/10.1038/nature17981
- Li R., Xie L., Wang W. Y., Liaw P. K., Zhang Y. High-Throughput Calculations for High-Entropy Alloys: A Brief Review // Front. Mater. 2020. V. 7. P. 12. https://doi.org/10.3389/fmats.2020.00290
- Lee K., Ayyasamy M. V., Delsa P., Hartnett T. O., Balachandran P. V. Phase classification of multiprincipal element alloys via interpretable machine learning // npj Comput Mater. 2022. V. 8 (25). P. 12. https://doi.org/10.1038/s41524-022-00704-v
- Abzaev Yu.A., Guda S.A., Guda A.A., Zelenkov A.A., Kolesnikov V. I. Structural Phase State of High-Entropy NbTiHfVZr Alloy // Physics of Metals and Metallography. 2023. V. 124 (8). P. 807.
- 11. Ivanov Yu.F., Abzaev Y.A., Gromov V.E., Konovalov S.V., Klopotov A.A., Semin A.P. Phase analysis and structural state of AlCoFeCrNi high-entropy alloy of non-equiatomic composition // AIP Con-ference Proceedings. 2022. V. 2509. P. 020087.
- 12. Evans D., Chen J., Bo-kas G., Chen W., Hautier G., Sun W. Visualizing temperature-dependent phase stability in high entropy alloys // Computational Materials. 2021. V. 7 (151). P. 1.
- 13. *Oganov A. R.*, *Glass C. W*. Crystal structure prediction using ab initio evolutionary techniques: Principles and applications // The Journal of Chemical Physics. 2006. № 124. 244704.
- 14. *Oganov A.R., Lyakhov A.O., Valle M.* How Evolutionary Crystal Structure Prediction Works-and why // Accounts of Chemical Research. 2011. № 44 (3). P. 227.
- Wang V., Xu N., Liu J.-C., Tang G., Geng W.-T. Vaspkit: A User-Friendly Interface Facilitating High-Throughput Computing and Analysis Using VASP Code // Computer Physics Communications. 2021. № 267. P. 108033. https://doi.org/10.1016/j.cpc.2021.108033
- 16. Togo A., Oba F., Tanaka I. First-Principles Calculations of the Ferroelastic Transition between Rutile Type and CaCl2-Type SiO₂ at High Pressures // Physical Review B. 2008. № 78 (3). P. 134106. http://dx.doi.org/10.1103/PhysRevB.78.134106
- 17. Головин Ю. И. Наноиндентирование и его возможности. М.: Машиностроение, 2009. 312 с.
- 18. ГОСТ 8.748—2011 (ИСО 14577—1:2002) Металлы и сплавы. Измерение твердости и других характеристик материалов при инструментальном индентировании. Часть 1: Метод испытаний.
- 19. Bäker M. Calculating phase diagrams with ATAT // arXiv: 1907.10151v1
- Zhang R. F., Zhang S. H., He Z. J., Jing J., Sheng S. H. Miedema Calculator: A thermodynamic platform for predicting formation enthalpies of alloys within framework of Miedema's Theory // Computer Physics Communications. 2016. V. 209. P. 58.
- 21. Kosmachev P. V., Abzaev Yu.A., Vlasov V. A. Quantitative phase analysis of plasma-treated high-silica materials // Russian Physics J. 2018. V. 61 (2). P. 264.
- 22. *Mazhnik E., Oganov A. R.* Application of machine learning methods for predicting new superhard materials // J. of Applied Physics. 2020. № 128. P. 075102.