ELECTROCHEMICAL SYNTHESIS OF INTERMETALLIC U–Ga AND U–Cd COMPOUNDS IN MOLTEN LiCl–KCl–CsCl EUTECTIC

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The processes of cathodic reduction of U(III) ions to metal in a low–melting LiCl–KCl–CsCl eutectic at the temperature range 650–850 K on tungsten, gallium and cadmium electrodes in an inert gas atmosphere have been studied by non-stationary and stationary electrochemical methods. Reagents without contain impurities of moisture, oxygen and their compounds were used in the experiments. All major operations were performed in a dry glove box. The following methods were used to analyze the electrochemical processes: cyclic voltammetry, square-wave voltammetry and potentiometry at zero current. On cyclic voltammogram of the molten LiCl–KCl–CsCl–UCl3 solution on an inert tungsten electrode, one cathode current peak corresponding to the deposition of metallic uranium and one anode current peak associated with its dissolution were recorded. It was found that the potential of the cathode peak was shifted to a region of more negative values with an increase of the scan rate. The value of the cathode peak current was directly proportional vs. the square root of the polarization rate, but this dependence does not pass through the origin. Consequently, the system of U(III)/U(0) couple was irreversible and proceeds in one stage. It was found that on square-wave voltammograms in the studied “electrochemical window” the deposition of uranium on liquid reactive gallium and cadmium electrodes was carried out at more positive values than on inert tungsten electrode. It was established that this potential shift was associated with the formation of intermetallic compounds of uranium with the material of reactive electrodes. The values of the alloy formation potentials were determined. For identification of the composition of cathode deposits, potentiostatic electrolysis was performed. By X–ray diffraction analysis, it was found that the formation of the intermetallic compounds Ga3U and Ga2U occurs on the gallium reactive electrode, and Cd11U occurs on the cadmium one. The conditions of their formation during the electrolysis of molten LiCl–KCl–CsCl–UCl3 solutions were established. The reaction of the electrochemical extraction of uranium from molten LiCl–KCl–CsCl–UCl3 electrolyte was investigated on liquid reactive electrodes at different duration of electrolysis. It was found that the electrochemical extraction of uranium exceeds 97% on both Ga and Cd electrodes.

作者简介

А. Novoselova

Institute of High-Temperature Electrochemistry UB RAS; The Ural Federal University named after the first President of Russia B.N. Yeltsin

编辑信件的主要联系方式.
Email: alena_novoselova@list.ru
Russia, Yekaterinburg; Russia, Yekaterinburg

V. Smolenski

Institute of High-Temperature Electrochemistry UB RAS; The Ural Federal University named after the first President of Russia B.N. Yeltsin

Email: alena_novoselova@list.ru
Russia, Yekaterinburg; Russia, Yekaterinburg

A. Bovet

Institute of High-Temperature Electrochemistry UB RAS; The Ural Federal University named after the first President of Russia B.N. Yeltsin

Email: alena_novoselova@list.ru
Russia, Yekaterinburg; Russia, Yekaterinburg

参考

  1. Chen L., Msigwa G., Yang M., Osman A.I., Fawzy S., Rooney D.W., Yap P.S. Strategies to achieve a carbon neutral society: a review // Environ. Chem. Lett. 2022. 20. P. 2277–2310.
  2. Sun D., Xia J. Research on road transport planning aiming at near zero carbon emissions: Taking ruicheng county as an example // Energy. 2023. 263. 125834.
  3. Komarov V.E., Smolenski V.V., Afonichkin V.K. Perspectivy ispol’zovaniya rasplavlennykh soley v radiokhimicheskikh tekhnologiyakh [Outlook for using molten salts in radiochemical technologies] // Rasplavy. 2000. № 2. P. 59–65. [In Russian].
  4. Lebedev V.A. Izbiratelnost’ zhidkometallicheskikh electrodov v rasplavlennykh galogenidakh [Selectivity of Liquid Metal Electrodes in Molten Halide]. Chelyabinsk: Metallurgiya, 1993. [In Russian].
  5. Kinoshita K., Tadafumi K., Tadashi I., Ougier M., Glatz J.P. Separation of actinides from rare earth elements by means of molten salt electrorefining with anodic dissolution of U–Pu–Zr alloy fuel // J. Phys. Chem. Solids. 2005. 66. P. 619–624.
  6. Laidler J.J., Battles J.E., Miller W.E., Ackerman J.P., Carls E.L. Development of pyroprocessing technology // Prog. Nucl. Energ. 1997. 31. P. 131–140.
  7. Zhang J. Electrochemistry of actinides and fission products in molten salts-data review // J. Nucl. Mater. 2014. 447. P. 271–284.
  8. Kuznetsov S.A., Hayashi H., Minato K., Gaune-Escard M. Electrochemical behavior and some thermodynamic properties of UCl4 and UCl3 dissolved in a LiCl–KCl eutectic melt // J. Electrochem. Soc. 2005. 152. P. C203–C212.
  9. Reddy B.P., Vandarkuzhali S., Subramanian T., Venkatesh P. Electrochemical studies on the redox mechanism of uranium chloride in molten LiCl–KCl eutectic // Electrochim. Acta. 2004. 49. P. 2471–2478.
  10. Xu M.H., Smolenski V., Liu Q., Novoselova A., Jiang K.W., Yu J., Liu J.Y., Chen R.R., Zhang H.S., Zhang M.L., Wang J. Thermodynamics, solubility and the separation of uranium from cerium in molten In/3LiCl–2KCl system // J. Electrochem. Soc. 2020. 167. 136506.
  11. Serrano K., Taxil P. Electrochemical reduction of trivalent uranium ions in molten chlorides // J. Appl. Electrochem. 1999. 29. P. 497–503.
  12. Rappleye D., Teaford K., Simpson M.F. Investigation of the effects of uranium(III)-chloride concentration on voltammetry in molten LiCl–KCl eutectic with a glass sealed tungsten electrode // Electrochim. Acta. 2016. 219. P. 721–733.
  13. Gao F., Wang C., Liu L., Guo J., Chang S., Chan L., Ouyang Y. Electrode processes of uranium ions and electrodeposition of uranium in molten LiCl–KCl // J. Radioanal. Nucl. Chem. 2009. 280. P. 207–218.
  14. Koyama T., Iizuka M., Kondo N., Fujita R., Tanaka H. Electrodeposition of uranium in stirred liquid cadmium cathode // J. Nucl. Mater. 1997. 247. P. 227–231.
  15. Koyama T., Iizuka M., Shoji Y., Fujita R., Tanaka H., Kobayashi T., Tokiwai M. An experimental study of molten salt electrorefining of uranium using solid iron cathode and liquid cadmium cathode for development of pyrometallurgical reprocessing // J. Nucl. Sci. Technol. 1997. 34. P. 384–393.
  16. Iizuka M., Koyama T., Kondo N., Fujita R., Tanaka H. Actinides recovery from molten salt/liquid metal system by electrochemical methods // J. Nucl. Mater. 2007. 247. P. 183–190.
  17. Yin T., Liu K., Liu Y.L., Yan Y.D., Wang G.L., Chai Z.F., Shi W.Q. Electrochemical and Thermodynamic Properties of Uranium on the Liquid Bismuth Electrode in LiCl–KCl Eutectic // J. Electrochem. Soc. 2018. 165. P. D722–D731.
  18. Liu K., Tang H.B., Pang J.W., Liu Y.L., Feng Y.X., Chai Z.F., Shia W.Q. Electrochemical properties of uranium on the liquid gallium electrode in LiCl–KCl eutectic // J. Electrochem. Soc. 2016. 163. P. D554–D561.
  19. Moriyama H., Yamana H., Nishikawa S., Miyashita Y., Moritani K., Mitsugashira T. Equilibrium distributions of actinides and lanthanides in molten chloride salt and liquid zinc binary phase system // J. Nucl. Mater. 1997. 247. P. 197–202.
  20. Kurata M., Sakamura Y., Matsui T. Thermodynamic quantities of actinides and rare earth elements in liquid bismuth and cadmium // J. Alloys Compd. 1996. 234. P. 83–92.
  21. Zhang J., Lahti E.A., Zhou W. Thermodynamic properties of actinides and rare earth fission products in liquid cadmium // J. Radioanal. Nucl. Chem. 2015. 303. P. 1637–1648.
  22. Sakamura Y., Hijikata T., Kinoshita K., Inoue T., Storvick T.S., Krueger C.L., Roy J.J., Grimmett D.L., Fusselman S.P., Gay R.L. Measurement of standard potentials of actinides (U, Np, Pu, Am) in LiCl–KCl eutectic salt and separation of actinides from rare earths by electrorefining // J. Alloys Comp. 1998. 271–273. P. 592–596.
  23. Smolenski V., Novoselova A., Osipenko A., Kormilitsyn M., Luk’yanova Ya. Thermodynamics of separation of uranium from neodymium between the gallium-indium liquid alloy and the LiCl–KCl molten salt phases // Electrochim. Acta. 2014. 133. P. 354–358.
  24. Smolenski V., Novoselova A., Osipenko A., Maershin A. Thermodynamics and separation factor of uranium from lanthanum in liquid eutectic gallium–indium alloy/molten salt system // Electrochim. Acta. 2014. 145. P. 81–85.
  25. Smolenski V., Novoselova A., Volkovich V., Luk’yanova Ya., Osipenko A., Bychkov A., Griffiths T.R. The effect of Al concentration on thermodynamic properties of Nd and U in Ga–Al-based alloys and the separation factor of Nd/U couple in a “molten salt-liquid metal system” // J. Radioanal. Nucl. Chem. 2017. 311. P. 687–693.
  26. Novoselova A., Smolenski V. The influence of the temperature and Ga–In alloy composition on the separation of uranium from neodymium in molten Ga–In/3LiCl–2KCl system during the recycling of high-level waste // J. Nucl. Mater. 2018. 509. P. 313–317.
  27. Bard A.J., Faulkner L.R. Electrochemical Methods Fundamentals and Applications. N.Y.: John Wiley & Sons, 1980.
  28. Galus Z. Theoretical Basis of Electrochemical Analysis. Moscow: Mir, 1974.
  29. ASM Binary Phase Diagrams, Software, ASM International, Copyright USA (1996). ISBN 0-87170-562-1.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (136KB)
3.

下载 (89KB)
4.

下载 (101KB)
5.

下载 (74KB)

版权所有 © А.В. Новоселова, В.В. Смоленский, А.Л. Бове, 2023

##common.cookie##