Hardfacing of multicomponent alloys containing refractory metals

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The paper considers the possibility of coating Al–Zr–V–Nb in the form of a powder with a fraction of 0.063 mm and a humidity of 0.33%, measured using the AND MX-50 device, on a substrate made of 08Cr18Ni10 steel. The deposition was carried out using a laser complex consisting of a laser radiation source LS-5 and a robot KUKA KR-60 ha in a protective argon atmosphere. Gas purging was carried out before the deposition process of 0.3 s and after 1 s. For reliable bonding of the coating powder (Al–Zr–V–Nb) with the surface of the base material (Steel 08Cr18Ni10), a mixture of powder with polyvinyl alcohol was applied to the steel before deposition. According to the data obtained on the Carl Zeiss EVO 40 scanning electron microscope, the optimal mode of deposition of Al–Zr–V–Nb powder on the base material corresponds to a power of 250 Watts at a processing speed of 0.5 m/s and a coating thickness of 0.6 mm. At a lower power of 230 W, the coating cannot melt qualitatively and, in this regard, insufficient penetration of the base metal by the coating metal (adhesion) occurs, resulting in partial detachment. If the power is increased to 270 W, then the base metal and the substrate interact with each other just as well and create a strong monolayer of the coating, as in the optimal mode, but when cooling, due to a significant difference in cooling speeds (the 08Cr18Ni10 steel plate does not have time to cool at the speed of the coating material), cracking occurs and the appearance of microcracks. Thus, there is a need to further increase the number of passes or an additional melting process to create a reliable coating with no discontinuities and islands. At the same time, measurements of Vickers microhardness (HV) during surfacing of the Al–Zr–V–Nb coating showed an increase in HV values by more than two times compared to the base material, which is a sufficient reason for using Al–Zr-V-Nb powder as a strengthening coating for 08Cr18Ni10 steel).

Texto integral

Acesso é fechado

Sobre autores

K. Oleinik

Institute of Metallurgy, Ural Branch of the RAS; Ural Federal University

Autor responsável pela correspondência
Email: 1007o1007@gmail.com
Rússia, Yekaterinburg; Yekaterinburg

I. Bakhteev

Ural Federal University

Email: 1007o1007@gmail.com
Rússia, Yekaterinburg

A. Russkih

Institute of Metallurgy, Ural Branch of the RAS

Email: 1007o1007@gmail.com
Rússia, Yekaterinburg

T. Osinkina

Institute of Metallurgy, Ural Branch of the RAS

Email: 1007o1007@gmail.com
Rússia, Yekaterinburg

E. Zhilina

Institute of Metallurgy, Ural Branch of the RAS

Email: 1007o1007@gmail.com
Rússia, Yekaterinburg

Bibliografia

  1. Devojno O. G., Kardapolova M.A., Kalinichenko A.S., Zharskij V.V., Vasilenko A.G. Texnologiya formirovaniya iznosostojkix pokry`tij na zheleznoj osnove metodami lazernoj obrabotki [Technology of formation of wear-resistant coatings on an iron base using laser processing methods]. Minsk, 2020. [In Russian].
  2. Chen J.H., Chen P.N., Lin C.M. et al. Microstructure and wear properties of multicomponent alloy cladding formed by gas tungsten arc welding (GTAW) // Surf. Coatings Technol. 2009. 203. № 20–21. P. 3231–3234.
  3. Sethi A.K. Studies on hard surfacing of structural steel by gas thermal spraying process // Materials Today: Proceedings. 2020. 21. P. 1436–1440.
  4. Furman E.L., Usoltsev E.A., Bakhteev I.S. et al. Effect of laser heat treatment on structure and wear resistance of cobalt stellite // Journal of Physics: Conference Series. 2019. 1396. № 1. P. 12016.
  5. Momin A.G., Khatri B.C., Chaudhari M. et al. Parameters for cladding using plasma transfer arc welding — A critical // Materials Today: Proceedings. 2023. 77. P. 614–618.
  6. Ulianitsky V.Y., Korchagin M.A., Gavrilov A.I. et al. FeCoNiCu Alloys obtained by detonation spraying and spark plasma sintering of high-energy ball-milled powders // Journal of Thermal Spray Technology. 2022. 31. № 4. P. 1067–1075.
  7. Ulianitsky V.Y., Rybin D.K., Ukhina A.V. et al. Structure and composition of Fe–Co–Ni and Fe–Co–Ni–Cu coatings obtained by detonation spraying of powder mixtures // Materials Letters. 2021. 290. P. 129498.
  8. Lv Y., Lei L., Sun L., Cui B. Improvement of the wear resistance of 20CrMnTi steel gear by discrete laser surface melting // Optics and Laser Technology. 2023. 165. № 1. P. 109598.
  9. Bukhari S., Husnain N., Siddiqui F. et al. Effect of laser surface remelting on microstructure, mechanical properties and tribological properties of metals and alloys: A review // Optics and Laser Technology. 2023. 165. P. 109588.
  10. Kalainathan S., Sathyajith S., Swaroop S. Effect of laser shot peening without coating on the surface properties and corrosion behavior of 316L steel // Optics and Lasers in Engineering. 2012. 50. № 12. P. 1740–1745.
  11. Qiao Q., Cristino V., Tam L., Kwok C. Corrosion properties of Ti–Ni–Cu coatings fabricated by laser surface alloying // Corrosion Science. 2023. 222. P. 111426.
  12. Xiao Y., Sun C., Wu X. et al. Restoration of pure copper motor commutator for aviation by laser powder deposition // Journal of Materials Research and Technology. 2023. 23. P. 5796–5806.
  13. Cosma C., Moldovan M., Simion M., Balc N. Impact of laser parameters on additively manufactured cobalt-chromium restorations // Journal of Prosthetic Dentistry. 2022. 128. № 3. P. 421–429.
  14. Savinkin V.V., Kolisnichenko S.N., Kuznetsova V.N. et al. Substantiation of the optimal mix of multi-component pulverulent composition used for laser restoration // Materials Chemistry and Physics. 2023. 295. № December 2022. P. 127208.
  15. Rodríguez Ripoll M., Ojala N., Katsich C. et al. The role of niobium in improving toughness and corrosion resistance of high speed steel laser hardfacings // Materials and Design. 2016. 99. № 6. P. 509–520.
  16. Madadi F., Shamanian M., Ashrafizadeh F. Effect of pulse current on microstructure and wear resistance of Stellite6/tungsten carbide claddings produced by tungsten inert gas process // Surface and Coatings Technology. 2011. 205. № 17–18. P. 4320–4328.
  17. Abed H., Malek Ghaini F., Shahverdi H. Characterization of Fe49Cr18Mo7B16C4Nb6 high-entropy hardfacing layers produced by gas tungsten arc welding (GTAW) process // Surface and Coatings Technology. 2018. 352. P. 360–369.
  18. Wang M., Ma Z., Xu Z., Cheng X. Designing VxNbMoTa refractory high-entropy alloys with improved properties for high-temperature applications // Scripta Materialia. 2021. 191. P. 131–136.
  19. Pang J., Zhang H., Zhang L. et al. A ductile Nb40Ti25Al15V10Ta5Hf3W2 refractory high entropy alloy with high specific strength for high-temperature applications // Materials Science and Engineering: A. 2022. 831. P. 142290.20.
  20. Larionov A.V., Taranov D.V., Ry`lov A.N. et al. Razrabotka texnologii polucheniya i aprobaciya novogo azoti uglerodsoderzhashhego prekursora na osnove vanadiya i alyuminiya dlya vyplavki ligatury V–Al–N–C [Development of technology for the production and testing of a new nitrogen and carbon-containing precursor based on vanadium and aluminum for smelting V–Al–N–C master alloy] // Perspektivnye materialy. 2023. 5. P. 56–65. [In Russian].
  21. Gulyaeva R.I., Pikulin K.V., Mansurova A.N. et al. Fazoobrazovanie pri alyuminotermicheskom vosstanovlenii titana iz ego oksidov so strukturami anataza i rutila [Phase formation during aluminothermic reduction of titanium from its oxides with anatase and rutile structures] // Neorganicheskie materialy. 2023. 59. № 2. P. 139–149. [In Russian].
  22. Larionov A.V., Pikulin K.V., Zhidovinova S.V., Udoeva L.Y. Yttrium effect on the structural-phase state in situ of Mo — 15.3 V — 10.5 Si composite // Perspektivnye Materialy. 2020. 7. P. 19–28.
  23. Pérez R.J., Massih A.R. Thermodynamic evaluation of the Nb–O–Zr system // Journal of Nuclear Materials. 2007. 360. № 3. P. 242–254.
  24. Demirov A.P., Sergevnin V.S., Blinkov I.V. et al. Termicheskaya stabil`nost` i elektroximicheskoe povedenie arc-PVD pokrytij Ti–Al–Mo–Ni–N [Thermal stability and electrochemical behavior of arc-PVD coatings Ti–Al–Mo–Ni–N] // Fizikoximiya poverxnosti i zashhita materialov. 2020. 56. № 2. P. 181–185. [In Russian].
  25. Osipenko M.A., Xaritonov D.S., Makarova I.V. et al. Izuchenie korrozionnogo povedeniya modificirovannyx anodno-oksidnyx pokrytij na splave alyuminiya Ad31 [Study of corrosion behavior of modified anodic-oxide coatings on ad31 aluminum alloy] // Fizikoximiya poverxnosti i zashhita materialov. 2021. 57. № 3. P. 312–321. [In Russian].
  26. Karfidov E`.A., Rusanov B.A., Sidorov V.E. et al. Korrozionno-elektroximicheskoe povedenie amorfnyx splavov Al–Ni–Co–Nd [Corrosion-electrochemical behavior of amorphous Al–Ni–Co–Nd alloys] // Rasplavy. 2022. № 2. P. 189–195. [In Russian].
  27. Kajbichev A.V., Kajbichev I.A. Mezhelektrodnyj perenos elementov rasplava Fe–Al (50 mas. %) v elektricheskom pole [Interelectrode transfer of Fe–Al melt elements (50 wt %) in an electric field] // Rasplavy. 2022. № 2. P. 214–220. [In Russian].
  28. Zhilina E.M., Russkikh A.S., Krasikov S.A. et al. Synthesis of high-entropy alloy AlTiZrVNb by aluminothermic reaction // Russian Journal of Inorganic Chemistry. 2022. 67. № 6. P. 888–891.
  29. Balakirev V.F., Osinkina T.V., Krasikov S.A. et al. Joint metallothermic reduction of titanium and rare refractory metals of group V // Russian Journal of Non-Ferrous Metals. 2021. 62. № 2. P. 190–196.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig.1

Baixar (33KB)
3. Fig.2

Baixar (58KB)
4. Fig.3

Baixar (25KB)
5. Fig.4

Baixar (139KB)
6. Fig.5

Baixar (230KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies