On measurement of the dependence of the effective conductivity of liquid metals with solid particles on the volume fraction of the impurity

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A method has been proposed and implemented for experimentally measuring the effective conductivity of a limited volume of a metal melt with an admixture of solid well-conducting particles depending on the volume fraction of the impurity in the range from zero to seven percent. A comparison is made with known theoretical dependencies for effective conductivity. It is shown that none of the considered models provides even qualitative agreement with experiment. On the experimental curve, several sections can be distinguished with different dependences of conductivity on the volume fraction of the impurity. The experimental data are approximated by analytical functions, which make it possible to use the results obtained for numerical modeling of MHD processes.

Texto integral

Acesso é fechado

Sobre autores

G. Losev

Institute of Continuous Media Mechanics, Ural Branch of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: losev.g@icmm.ru
Rússia, Perm

R. Okatiev

Institute of Continuous Media Mechanics, Ural Branch of the Russian Academy of Sciences

Email: losev.g@icmm.ru
Rússia, Perm

Bibliografia

  1. Šċepanskis M., Jakoviċs A., Nacke B. Homogenization of non-conductive particles in EM induced metal flow in a cylindrical vessel // Magnetohydrodynamics. 2010. 46. № 4. P. 413–424.
  2. Timofeev V., Pervukhin M., Vinter E., Sergeev N. Behavior of non-conducting particles in molten aluminium cast into electromagnetic molds // Magnetohydrodynamics. 2020. 56. № 4. P. 459–472.
  3. Nigmatulin R.I. Dinamika mnogofaznyh sred [Dynamics of multiphase media]. Part I. M.: Nauka. 1987. [In Russian].
  4. Syamlal M., O’Brien T.J. Simulation of granular layer inversion in liquid fluidized beds // International Journal of Multiphase Flow. 1988. 14. № 4. P. 473–481.
  5. Garside J., Al-Dibouni M.R. Velocity-voidage relationships for fluidization and sedimentation in solid-liquid systems // Industrial & Engineering Chemistry Process Design and Development. 1977. 16. № 2. P. 206–214.
  6. Wang M., Pan N. Predictions of effective physical properties of complex multiphase materials // Materials Science and Engineering: R: Reports. 2008. 63. № 1. P. 1–30.
  7. Dobychin E. I., Popov V. I. Force action of an electromagnetic field on the particles of an inhomogeneous medium // Magnetohydrodynamics. 1971. 7. № 2. P. 163–166.
  8. Zimmerman R. W. Thermal conductivity of fluid-saturated rocks // Journal of Petroleum Science and Engineering. 1989. 3. № 3. P. 219–227.
  9. Bruggeman D. A. G. Berechnung verschiedener physikalischer konstanten von heterogenen substanzen. I. Dielektrizitätskonstantenund leitfähigkeiten der mischkörper aus isotropen substanzen // Annalen der Physik. 1935. 416. № 7. P. 636–664.
  10. Landauer R. The electrical resistance of binary metallic mixtures // Journal of Applied Physics. 1952. 23. № 7. P. 779–784.
  11. Garnett J.C.M. Colours in metal glasses and in metallic films // Philosophical Transactions of the Royal Society of London. Series A. 1904. 203. P. 385–420.
  12. Markel V. A. Introduction to the maxwell garnet approximation: tutorial // Journal of the Optical Society of America A. 2016. 33. № 7. P. 1244.
  13. Landau L.D., Lifshic E.M. Teoreticheskaya fizika. Elektrodinamika sploshnyh sred [Theoretical physics. Electrodynamics of continuous media]. M.: FIZMATLIT. 2005. [In Russian].
  14. Belyaev B.A., Tyurnev V.V. Electrodynamic calculation of effective electromagnetic parameters of a dielectric medium with metallic nanoparticles of a given size // Journal of Experimental and Theoretical Physics. 2018. 127. № 4. P. 608–619.
  15. Hamilton R.L., Crosser O.K. Thermal conductivity of heterogeneous two-component systems // Industrial & Engineering Chemistry Fundamentals. 1962. 1. № 3. P. 187–191.
  16. Hamilton R.L. Thermal conductivity of heterogeneous mixtures. Ph.D. Dissertation. University of Oklahoma. 1960.
  17. Fricke H. A mathematical treatment of the electric conductivity and capacity of disperse systems I. The electric conductivity of a suspension of homogeneous spheroids // Physical Review. 1924. 24. № 5. P. 575–587.
  18. Landau L.D., Lifshic E.M. Teoreticheskaya fizika. Fizicheskaya kinetika [Theoretical physics. Physical kinetics]. M.: FIZMATLIT. 2002. [In Russian].
  19. Gao L., Gu J.Z. Effective dielectric constant of a two-component material with shape distribution // Journal of Physics D: Applied Physics. 2002. 35. № 3. P. 267–271.
  20. Povh I.L., Kapusta A.B., Chekin B.V. Magnitnaya gidrodinamika v metallurgii [Magnetic hydrodynamics in metallurgy]. M.: Metallurgiya. 1974. [In Russian].
  21. Arnol’dov M.N., Ivanovskij M.N., Subbotin V.I., SHmatko B.A. Vliyanie dissociiruyushchih i termicheski prochnyh gazovyh primesej na elektrosoprotivlenie shchelochnyh metallov [Influence of dissociating and thermally strong gas impurities on the electrical resistance of alkali metals] // Teplofizika vysokih temperatur. 1967. 5. № 5. P. 812–816. [In Russian]
  22. Livshic B.G., Kraposhin V.S., Lipeckij Ya.L. Fizicheskie svojstva metallov i splavov [Physical properties of metals and alloys]. M.: Metallurgiya. 1980. [In Russian].
  23. Blake L.R., Eames A.R. Electrical-resistivity meter monitors oxygen content of liquid metals // Nucleonics (U.S.) Ceased publication. 1961. 19. № 5. P. 5.
  24. McPheeters C., Williams J. A comparison of three methods of oxygen concentrationmeasurement in sodium // Alkali metal coolants. 1966. P. 429–448.
  25. Kozlov F.A., Volchkov L.G., Kuznecov E.K., Matyuhin V.V. ZHidkometallicheskie teplonositeli YAEU ochistka ot primesej i ih kontrol’ [Liquid metal coolants of nuclear power plants, purification from impurities and their control]. M.: Atomizdat. 1983. [In Russian].
  26. Bagdarasov Yu.E. Tekhnicheskie problemy reaktorov na bystryh nejtronah [Technical problems of fast neutron reactors]. M.: Atomizdat. 1969. [In Russian].
  27. Firsova E.V. Issledovanie teploobmena i gidravlicheskogo soprotivleniya pri prodol’nom obtekanii puchka trub vodoj [Study of heat transfer and hydraulic resistance during longitudinal flow of water around a bundle of pipes] // Inzhenerno-fizicheskij zhurnal. 1963. 6. P. 17. [In Russian].
  28. Leenov D., Kolin A. Theory of electromagnetophoresis. I. Magnetohydrodynamic forces experienced by spherical and symmetrically oriented cylindrical particles // The Journal of Chemical Physics. 1954. 22. № 4. P. 683–688.
  29. Ozernyh V.S., Kolesnichenko I.V., Frik P.G. Techenie v zhidkom metalle pod dejstviem elektromagnitnyh sil vblizi sfericheskoj chasticy s otlichayushchejsya elektroprovodnost’yu [Flow in a liquid metal under the influence of electromagnetic forces near a spherical particle with different electrical conductivity] // Vychislitel’naya mekhanika sploshnyh sred. 2022. 15. № 3. P. 354–362. [In Russian].

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig.1

Baixar (73KB)
3. Fig.2

Baixar (450KB)
4. Fig.3

Baixar (121KB)
5. Fig.4

Baixar (70KB)
6. Fig.5

Baixar (175KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies