GLASSES FOR JOINING CERAMICS BASED ON Al2O3 AND MgO

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Joining ceramic products made of magnesium and aluminum oxides is a difficult task due to the significant difference in the values of the coefficient of thermal expansion (CTE) of the materials. The actual difference in CTE of the articulated components is 5 · 10-6 K-1. In this paper, the possibility of using silicate glasses to connect ceramic products based on magnesium oxide and aluminum oxide is investigated, since the properties of glasses can be adapted to specific materials by selecting the appropriate components and their proportions. Glass-based sealants are cheap to manufacture, demonstrate acceptable stability in oxidizing and reducing environments, and have good adhesion and wettability. Four glass compositions with additives of alkali and alkaline earth metal oxides have been developed to combine ceramic products made of magnesium oxide and aluminum oxide. Their coefficient of thermal expansion, glass transition and softening temperatures are determined. The glass transition temperature is in the range of 458–613°C. The glass softening temperature ranged from 504°C to 687°C. The operating temperature of the ceramic joint is 650°C, so the glass must have a softening temperature (Ts) in the range 650–680°C. The glass sealant 930 and 6515 have a low softening temperature and cannot be used at an operating temperature of 650°C. Experimental gluing of samples from Al2O3 and MgO using glasses 508 and 509 was carried out. The connection of ceramic parts made of aluminum oxide and magnesium using glass sealant 509 showed unsatisfactory results. It has been established that the hermetic connection of the articulated components is possible using glass sealant 508 with additives of alkali and alkaline earth metal oxides.

About the authors

V. A. Nikonorova

Institute of High Temperature Electrochemistry of the Ural Branch of the Russian Academy of Sciences

Email: v.nikonorova@ihte.ru
Yekaterinburg, Russia

A. V. Kuchugurov

Institute of High Temperature Electrochemistry of the Ural Branch of the Russian Academy of Sciences

Yekaterinburg, Russia

M. V. Erpalov

Institute of High Temperature Electrochemistry of the Ural Branch of the Russian Academy of Sciences

Yekaterinburg, Russia

References

  1. Othman A.G.M., Khalil N.M. Sintering of magnesia refractories through the formation of periclase–forsterite–spinel phases // Ceramics International. 2005. 31 (8). Р. 1117–1121. https://doi.org/10.1016/j.ceramint.2004.11.011
  2. Othman A.G.M. Effect of talc and bauxite on sintering, microstructure, and refractory properties of Egyptian dolomitic magnesite // British Ceramic Transactions. 2003. 102. P. 265–271. https://doi.org/10.1179/096797803225009391
  3. Добросмыслов С.С., Симунин М.М., Воронин А.С., Фадеев Ю.В., Задов В.Е., Нагибин Г.Е., Хартов С.В. Исследование влияния наноразмерного волокна оксида алюминия на термостойкость огнеупорного бетона // Новые огнеупоры. 2020. № 12. С. 38–42. https://doi.org/10.17073/1683-4518-2020-12-38-42
  4. Фэн Д., Ло С., Цзан Ц., Се Ч., Хань П. Влияние добавки Al2O3 + 4SiO2 на спекание и термостойкость керамики на основе MgO // Новые огнеупоры. 2016. № 8. С. 48–54. https://doi.org/10.17073/1683-4518-2016-8-48-54
  5. Cunha-Duncan F.N., Balmori-Ramirez H., Sorrell C.C., Bradt R.C. Synthetic spinel-forsterite refractory aggregates from the sillimanite minerals // Minerals & Metallurgical Processing. 2003. 20. P. 143–152. https://doi.org/10.1007/BF03403147
  6. Mustafa E., Khalil N.M., Othman A.G. Sintering and microstructure of spinel–forsterite bodies // Ceramics International. 2002. 28 (6). P. 663–667. https://doi.org/10.1016/S0272-8842(02)00025-1
  7. Lin S.E., Cheng Y.R., Wei W.C.J. BaO–B2O3–SiO2–Al2O3 sealing glass for intermediate temperature solid oxide fuel cell // Journal of Non-Crystalline Solids. 2012. 358 (2). P. 174–181. https://doi.org/10.1016/j.jnoncrysol.2011.09.013
  8. Hao J., Zan Q., Ai D., Ma J., Deng C., Xu J. Structure and high temperature physical properties of glass seal materials in solid oxide electrolysis cell // Journal of Power Sources. 2012. 214. P. 75–83. https://doi.org/10.1016/j.jpowsour.2012.03.087
  9. Dong Z., Lai J., Huang W., Pang S., Zhuang H., Zhan H., Tang D., Chen K., Zhang T. A robust glass-ceramic sealing material for solid oxide fuel cells: Effect of Ba3Nb10O28 phase // Journal of the European Ceramic Society. 2019. 39 (4). P. 1540–1545. https://doi.org/10.1016/j.jeurceramsoc.2018.12.001
  10. Javed H., Zanchi E., D’Isanto F., Bert C., Ferrero D., Santarelli M., Smeacetto F. Novel SrO-Containing Glass-Ceramic Sealants for Solid Oxide Electrolysis Cells (SOEC): Their Design and Characterization under Relevant Conditions // Materials. 2022. 15. 5805. https://doi.org/10.3390/ma15175805
  11. Sun T., Xiao H., Guo W., Hong X. Effect of Al2O3 content on BaO–Al2O3–B2O3–SiO2 glass sealant for solid oxide fuel cell // Ceramics International. 2010. 36 (2). P. 821–826. https://doi.org/10.1016/j.ceramint.2009.09.045
  12. Kumar V., Arora A., Pandey O.P., Singh K. Studies on thermal and structural properties of glasses as sealants for solid oxide fuel cells // International Journal of Hydrogen Energy. 2008. 33 (1). P. 434–438. https://doi.org/10.1016/j.ijhydene.2007.07.049
  13. Wang S.-F., Lu C.-M., Wu Y.-C., Yang Y.-C., Chiu T.-W. La2O3–Al2O3–B2O3–SiO2 glasses for solid oxide fuel cell applications // International Journal of Hydrogen Energy. 2011. 36 (5). P. 3666–3672. https://doi.org/10.1016/j.ijhydene.2010.12.105
  14. Da Silva M.J., Bartolome J.F., De Aza A.H., Mello-Castanho S. Glass ceramic sealants belonging to BAS (BaO–Al2O3–SiO2) ternary system modified with B2O3 addition: A different approach to access the SOFC seal issue // Journal of the European Ceramic Society. 2016. 36 (3). P. 631–644. https://doi.org/10.1016/j.jeurceramsoc.2015.10.005
  15. Zhang T., Zou Q. Tuning the thermal properties of borosilicate glass ceramic seals for solid oxide fuel cells // Journal of the European Ceramic Society. 2012. 32 (16). P. 4009–4013. https://doi.org/10.1016/j.jeurceramsoc.2012.07.036

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».