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В работе исследованы плотности и  статистико-геометрические характеристи-
ки случайных упаковок правильных пятиугольников на плоскости. Начальный 
ансамбль генерировали методом случайной последовательной адсорбции 
(random sequential adsorption, RSA). Предложен алгоритм уплотнения упаков-
ки, который является модификацией способа Любашевского—Стиллинджера 
(Lubachevsky-Stillinger, LS). Конечный ансамбль получали путем поэтапно-
го увеличения линейных размеров двухмерных частиц при фиксированной 
плотности квадратного «бокса». Показано, что плотность упаковки конечного 
ансамбля для данного алгоритма практически не зависит от плотности началь-
ного ансамбля (при общем числе частиц порядка 104 и более). Максимальная 
плотность упаковки стартового ансамбля правильных пентагонов, полученная 
методом RSA, составила 0.54306 ± 0.00220, что хорошо согласуется с литератур-
ным значением 0.54132. Наибольшая (финальная) плотность, достигнутая после 
уплотнения стартового ансамбля, составила для пентагонов 0.8381 ± 0.0020. Это 
значение близко к величине, найденной по аналогичному алгоритму для упа-
ковки жестких дисков (0.84—0.86). Корреляционные функции жестких дисков 
и пентагонов демонстрируют ряд общих закономерностей. В то же время «кри-
сталлизация» ансамбля жестких дисков при относительно высоких плотностях, 
близких к максимально достигнутым, выражена более резко. При этом «пики» 
корреляционной функции для пентагонов (по сравнению с дисками) ожидаемо 
имеют меньшую высоту и большую ширину, более сложное строение. Ансамбли 
невыпуклых (non-convex) частиц с  пентагональной симметрией (таких, как 
пятиконечные звезды) демонстрируют существенно меньшие плотности упа-
ковки и  не уплотняются до  частичной «кристаллизации». Относительно про-
стой алгоритм уплотнения «стартовых» случайных упаковок многоугольников, 
примененный в  работе, позволяет «уплотнять» двухмерные ансамбли любых 
многоугольников (без самопересечений). Однако частичное упорядочение 
и достаточно высокие плотности (отвечающие началу «кристаллизации» ансам-
бля) достигаются при его использовании только для выпуклых (convex) полиго-
нальных частиц.
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ВВЕДЕНИЕ

Случайные двухмерные и  трехмерные упаковки одинаковых частиц представ-
ляют интерес как упрощенные модели дисперсных сред, коллоидов, жидких кри-
сталлов, расплавов, металлических стекол, порошковых смесей и композитов [1–7]. 
Многие закономерности, характерные для трехмерных ансамблей, присутствуют 
и в двухмерных — сжатие последних используется как физико-химическая модель 
уплотнения и  фазовых переходов в  системах жидкость (расплав)-аморфная сре-
да-кристаллическая фаза. Исследованию уплотнения и статистико-геометрических 
свойств ансамблей жестких дисков (hard disks, HD) посвящены многие работы [8–10]. 
Детально исследованы предельные плотности упаковки, корреляционные функции, 
координационные числа и их распределения [8], а также физико-химические свой-
ства таких систем (при молекулярно-динамическом моделировании). Двухмерные 
ансамбли одинаковых частиц (фигур) несферической формы также были предметом 
многих исследований, начиная, видимо, с работы Онзагера [11]. В последние годы 
интерес к таким системам не уменьшается [12].

Свойства случайных ансамблей дисков и  правильных многоугольников, полу-
ченных методом случайной последовательной адсорбции (RSA), были достаточно 
подробно изучены — например, в работах [13–20]. Алгоритм RSA включает разме-
щение неперекрывающихся частиц со случайными координатами до «насыщения» 
поверхности. Этот алгоритм интуитивно понятен, хорошо запротоколирован и дает 
воспроизводимые результаты. Максимальные плотности упаковки для правильных 
пентагонов, полученные таким образом, составляют приблизительно 0.5413  [15] 
и практически не зависят от соотношения линейных размеров частиц и квадратного 
«бокса», в котором они размещаются, если это соотношение составляет менее 0.01 
(что соответствует количеству частиц > 104).

Дальнейшее уплотнение «начальных» ансамблей частиц, полученных методом 
RSA, требует использования других алгоритмов. Наиболее распространенными 
являются модификации способа Любашевского—Стиллинджера [17], включающие 
пошаговое увеличение линейных размеров всех частиц упаковки с  «релаксацией» 
на каждом шаге. Используется также моделирование «осаждения» частиц под дей-
ствием направленной силы [18]. Вместе с тем до настоящего времени применяются 
и «натурные» эксперименты, при которых исследуются статистико-геометрические 
свойства случайных ансамблей реальных частиц, размещенных на плоском пласти-
ковом столе и уплотняемых путем смещения границ упаковки [19, 20].

Автором [21–23] были определены предельные плотности случайных ансамблей 
жестких дисков и 3D-сфер, найдены координационные распределения для упако-
вок частиц произвольной формы (в частности, дисков) [24]. В работе [25] проведено 
сравнение функций радиального распределения и координационных чисел для все-
го ансамбля частиц и малой группы фиксированных (pinned) 2D- и 3D-сфер внутри 
него, найдены закономерности изменения среднего исключенного объема и уточне-
ны предельные плотности случайных упаковок сфер.

Пентагон, возможно, является одним из наиболее интересных правильных много-
угольников. Это связано с «золотым сечением» и другими его замечательными особен-
ностями. Пентагональная симметрия в материалах, как правило, связана со структурой 
квазикристаллов [26] и металлических стекол [27,28]. Частицы-кристаллы с пентаго-
нальной симметрией могут быть получены путем электрохимического осаждения ряда 
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металлов на плоской поверхности [29, 30]. В данной работе изучены статистико-ге-
ометрические свойства (предельные плотности, корреляционные функции) случай-
ных ансамблей жестких правильных пентагонов при различных плотностях упаковки 
на плоскости. При этом начальные ансамбли получали методом RSA, а более плотные 
— с  использованием модификации алгоритма Любашевского—Стиллинджера (LS). 
Свойства упаковок пентагонов сравнивались с таковыми для ансамблей жестких дис-
ков, полученных аналогичным способом.

АЛГОРИТМЫ И КОМПЬЮТЕРНЫЙ ЭКСПЕРИМЕНТ

Размещение частиц (с радиусом описанной окружности R, радиусом вписанной 
окружности r и площадью s) производили в квадратном боксе, при соотношении диа-
метра D и стороны бокса (L), равном 0.01 (общее число частиц N порядка 104). Ста-
тистико-геометрические свойства исследовали во «внутренней» области, достаточно 
удаленной от  границ бокса, чтобы избежать «граничных эффектов». Практически 
такая реализация отвечает периодическим граничным условиям для «внутреннего» 
бокса. При таком (или большем) общем количестве частиц N (вплоть до 105–106) 
статистико-геометрические свойства (в пределах статистического разброса) практи-
чески не изменяются для различных соотношений D/L. Так, предельные плотности 
упаковки η = Ns/L2 для случайной последовательной адсорбции (осаждения) пра-
вильных пентагонов на плоскости составляют [15], соответственно, при D/L = 0.01; 
0.003; 0.001 – 0.541319; 0.541241; 0.541344. Похожие закономерности были выявлены 
и в настоящей работе. Поэтому в данном исследовании использовали фиксирован-
ное соотношение D/L для частиц, равное 0.01.

Алгоритм RSA был реализован следующим образом. Частицы размещали после-
довательно, со случайными координатами, при этом количество «неудачных» попы-
ток (итераций) для последней размещенной частицы было ограничено величиной 
K, которую изменяли в пределах 1·102—15·107. Зависимость достигнутого значения 
плотности упаковки от максимального числа итераций (на одну частицу) η (K) хоро-
шо описывается степенным законом, аналогичным описанному в  [14] для общего 
числа итераций (с несколько другими значениями параметров):

	 η (K)= A – B·K(–1/C),	 (1)

где величина A  определяет максимально достижимую плотность упаковки при 
RSA, величины B  и C  – коэффициенты. Кривая зависимости (1) для ансамбля 
пентагонов показана на рис. 1. Она описывается уравнением (1) с высоким коэф-
фициентом детерминации (r2 = 0.9989). Величина наибольшей плотности для RSA, 
полученная нами, оказалась равной 0.54306 ± 0.00220. Значения коэффициентов: 
B = 0.64136 ± 0.05760; C=3.85916 ± 0.21890. Можно видеть, что данная плотность 
упаковки (в пределах статистического разброса) совпадает с литературным значе-
нием [15] – 0.541319.

«Стартовые» упаковки пентагональных частиц для дальнейшего уплотнения 
генерировали, не  достигая предельных плотностей для алгоритма RSA. Как пра-
вило, ограничивались максимально заданным числом итераций (для последней 
размещенной частицы) от 1000 до 100000. При соотношении D/L = 0.01 это отве-
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чало количеству пентагонов приблизительно 7000–8000. Как отмечено выше, даль-
нейшее уменьшение D/L (и увеличение количества частиц до 105 и  более) прак-
тически не  сказывалось на  результатах исследования статистико-геометрических 
свойств во «внутренней» области ансамбля. Последнюю выбирали обычно, отступая 
по 10% от длины L с каждой стороны бокса.

«Стартовую» упаковку со случайным расположением частиц уплотняли с помо-
щью алгоритма, аналогичного способу LS  [17]. Радиусы вписанной окружности 
r (и линейные размеры частиц) увеличивали пошагово, на каждом шаге умножая 
их  на 1.001. После этого частицам задавали потенциальное перемещение в  слу-
чайном направлении на малое случайное расстояние (с одновременным поворо-
том на малый случайный угол). Эти действия повторяли для всех частиц упаковки 
до достижения максимально заданного количества попыток M (обычно – не более 
1000). Если при этом удавалось получить конфигурацию, при которой ни  один 
из многоугольников не перекрывался с другим, а также не выходил за границу упа-
ковки  – эта новая конфигурация сохранялась в  виде списка координат центров 
и ориентационных углов. После этого линейный размер частиц вновь увеличивался 
и все операции повторялись.

Подобный (в геометрическом отношении) способ уплотнения эффективен для 
случайных упаковок частиц различной формы в  двухмерном и  трехмерном про-
странстве (в частности, жестких дисков, жестких сфер, платоновых многогранни-
ков и др.  [23, 25, 31, 32]). В случае правильных пентагонов такой алгоритм позво-
ляет «уплотнить» исходный RSA-ансамбль от  начальных плотностей упаковки 
η ≈ 0.45–0.50 до конечных значений η ≈ 0.80–0.84. В результате расчетов получали 
до нескольких сотен файлов-списков координат (для каждой промежуточной плот-
ности упаковки), которые в  дальнейшем использовали для визуализации, генера-
ции кинематограмм уплотнения, исследования корреляционных функций и других 
свойств упаковок. На рис. 2 в качестве примера показана исходная (а) и конечная (б) 
упаковки пентагонов для относительно большого (в целях визуализации) размера 
частиц (D/L = 0.1). На рис. 3 дана зависимость величины количества попыток сме-
щения M от достигнутой плотности упаковки.
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Рис. 1. Зависимость плотности упаковки η от максимального заданного числа итераций (K) на послед-
нюю размещенную частицу.
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Это количество попыток практически не изменяется и составляет в среднем 2–5 
на интервале плотностей от стартовой вплоть до ≈ 0.75–0.77. После этого величина 
M резко возрастает и увеличивается асимптотически с приближением к максималь-
но достигнутой. Дальнейшее увеличение количества попыток практически не дает 
роста плотности упаковки. Иногда вблизи максимальной плотности встречаются 
локальные «выбросы» числа M с приближением к асимптоте (см. рис. 3).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Применение описанного выше алгоритма уплотнения позволяет получить слу-
чайные ансамбли жестких одинаковых пентагонов в квадратном боксе при плотно-
сти упаковки от стартовой (RSA) до максимально сжатой (близкой к так называемому 

Рис. 2. Исходный (а) и финальный (б) ансамбли одинаковых правильных пентагонов в квадратном боксе 
при начальном соотношении D/L ≈ 0.1

0

0.4 0.5 0.6 0.7 0.8 0.9

М 500

1000
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Рис. 3. Зависимость числа попыток смещения M от достигнутой плотности упаковки η.
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maximally random jammed state, MRJ [2]). При заданном соотношении начального диа-
метра описанной вокруг частицы окружности и линейного размера ящика (D/L = 0.01) 
нами при каждом «запуске» программы были получены последовательности фай-
лов-списков координат и углов ориентации частиц для различных плотностей упаков-
ки с относительно малым «шагом».

На рис. 4 приведены результаты применения описанного выше алгоритма 
уплотнения при разных «стартовых» плотностях RSA-упаковки. Можно видеть, что 
при соотношении D/L  =  0.01 финальная плотность (ηmax) практически не  зависит 
от «стартовой». В  линейной аппроксимации она составляет 0.8381  ±  0.0020. Дан-
ное значение соответствует плотности упаковки для второго «фазового перехода» 
в системе жестких пентагонов, изученной методом Монте-Карло [33].

Для каждой из  упаковок находили парную корреляционную функцию 
G(x/d) = ρ/ρ0, где x – расстояние между центрами соседних частиц; d = 2r – диа-
метр вписанной в пентагон окружности; ρ – числовая плотность, равная количе-
ству центров соседних частиц на единицу площади в слое [x; x+Δx] вокруг заданной 
частицы; ρ0  – средняя числовая плотность (число частиц на  единицу площади). 
Интервал Δx для расчетов выбирали равным 0.01d. Статистико-геометрические 
свойства определяли методом Монте-Карло во «внутренней» области бокса со сто-
роной (L – 10D) и центром, совпадающим с центром бокса. На рис. 5 показаны 
функции G(x/d) для исходной, двух промежуточных и близкой к финальной плот-
ностей упаковки.

На рис. 6 для сравнения представлены радиальные функции распределения 
для ансамбля жестких дисков с  размерными характеристиками (D/L  =  0.002, 
N  ~  105), полученными в  настоящей работе по  аналогичному алгоритму уплот-
нения. Отметим, что финальная плотность упаковки для ансамбля жестких 
частиц зависит от параметров алгоритма уплотнения. Так, для дисков достигнутая 
финальная плотность упаковки  [34] варьировалась в  пределах 0.852–0.895. При 
этом в ансамбле возрастает доля «кристаллической» фазы, что можно наблюдать 
как на его 2D-изображениях[34], так и по росту соответствующих пиков корреля-
ционной функции.
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Рис. 4. Зависимость максимальной достигнутой плотности упаковки ηmax в  стартовой и  финальной 
(jammed) упаковке от заданного наибольшего числа итераций (KRSA) на размещенную частицу в стартовом 
RSA-ансамбле.
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На рис. 7 приведены визуализированные массивы корреляционной функции 
G(x/d) для уплотняемого ансамбля правильных пентагонов (в виде трехмерного гра-
фика для различных плотностей упаковки).

Для других частиц с  пентагональной симметрией (пятиконечные звезды) нам 
не удалось с помощью описанного алгоритма получить финальные упаковки с плот-
ностью ηmax, близкой к таковой для дисков и правильных пентагонов. В табл. 1 при-
ведены максимальные плотности ансамблей пятиконечных звездообразных частиц, 
полученные в  рамках описанного выше алгоритма уплотнения, в  зависимости 
от радиуса вписанной окружности. При радиусе описанной окружности R=1 и ради-
усе вписанной окружности r ≈ 0.809017 звезда «вырождается» в правильный пяти
угольник. При R = r = 1 многоугольник «вырождается» в диск.

Можно наблюдать, что использованный в работе алгоритм уплотнения «стар-
товой» RSA упаковки частиц позволяет получить достаточно высокие плотности 
для пентагонов. Звездообразные частицы с пентагональной симметрией (в зависи-
мости от  радиуса вписанной окружности) демонстрируют существенно меньшие 
плотности упаковки.

На графиках корреляционных функций  (рис. 5, 6) можно видеть сравнительно 
близкое поведение ансамблей пентагонов и жестких дисков. В том и другом случае 
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Рис. 5. Парные корреляционные функции ансамбля пентагонов для плотностей упаковки η = 0.445 (а), 
0.650 (б), 0.751 (в) и 0.839 (г).
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наблюдается появление выраженных множественных пиков G(x/d) уже после дости-
жения плотности упаковки η ≈ 0.7 и более. В то же время высота пиков в процессе 
частичной «кристаллизации» ансамбля существенно больше в случае жестких дисков. 
При этом первый пик G(x/d) для пентагонов разделяется на два «подпика», а второй – 
на два «подпика», каждый из которых имеет боковое «плечо» (при достаточно высо-
кой плотности упаковки). Для дисков пики, связанные с наличием «упорядоченной» 
фазы, выражены более четко.

В целом если рассматривать совокупность частиц с пентагональной симметри-
ей, достаточно высоких плотностей удается достигнуть только для выпуклых частиц 
(правильных пятиугольников). Относительно простой механизм уплотнения, при-
нятый в данной работе, для невыпуклых частиц (таких, как пентаграмма) работает 
менее эффективно.

Таблица 1. Максимальные плотности упаковки, достигнутые для ансамблей частиц с пентаго-
нальной симметрией

r/R ηmax

0.161804 0.310

0.323608 0.480

0.381966 (пентаграмма) 0.544

0.485410 0.638

0.647214 0.736

0.809017 (пентагон) 0.838

1.0 (диск) 0.856
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Рис. 8. Зависимость максимальной достигнутой плотности упаковки от соотношения радиусов вписан-
ной и описанной окружности для звездообразных фигур с пентагональной симметрией.
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ЗАКЛЮЧЕНИЕ

Исследованы плотности и статистико-геометрические характеристики случайных 
упаковок правильных пятиугольников на  плоскости. Начальный ансамбль генери-
ровали методом случайной последовательной адсорбции (RSA). Конечный ансамбль 
получали путем поэтапного увеличения линейных размеров двухмерных частиц при 
фиксированной плотности квадратного «бокса». Такой способ уплотнения упаков-
ки является модификацией известного алгоритма Любашевского—Стиллинджера 
(Lubachevsky-Stillinger, LS). Показано, что плотность упаковки финального ансамбля 
для данного алгоритма практически не зависит от начальной плотности (при общем 
числе частиц порядка 104 и более). При этом плотности упаковки η > 0.75–0.80, при 
которых наблюдается частичная «кристаллизация» ансамбля, достигаются только для 
выпуклых (convex) многоугольников. Случайные ансамбли других частиц с пентаго-
нальной симметрией (звезд) с различным соотношением радиусов вписанной и опи-
санной окружностей не уплотняются до состояния, при котором могло бы начаться 
частичное упорядочение упаковки.

Максимальная плотность упаковки стартового ансамбля правильных пентаго-
нов, полученная методом RSA, составила 0.54306 ± 0.00220, что хорошо согласуется 
с  литературным значением  [15]. Наибольшая (финальная) плотность, достигнутая 
после уплотнения стартового ансамбля, составила для пентагонов 0.8381 ± 0.0020. 
Это значение близко к величине, найденной по аналогичному алгоритму для упа-
ковки жестких дисков (0.84—0.86).

Корреляционные функции жестких дисков и  пентагонов демонстрируют ряд 
общих закономерностей. В то же время «кристаллизация» ансамбля жестких дисков 
при относительно высоких плотностях, близких к максимально достигнутым, выра-
жена более резко. При этом «пики» G(x/d) для пентагонов ожидаемо имеют мень-
шую высоту и  большую ширину, более сложное строение, связанное с  различием 
радиусов вписанной и описанной окружностей.

Отметим, что относительно несложный алгоритм уплотнения «стартовых» слу-
чайных упаковок многоугольников, примененный в работе, позволяет «уплотнять» 
двухмерные ансамбли любых выпуклых и невыпуклых многоугольников (без само-
пересечений). Однако частичное упорядочение и  достаточно высокие плотности 
(отвечающие началу «кристаллизации» ансамбля) достигаются при его использова-
нии только для выпуклых частиц.

Работа выполнена по Государственному заданию ИМЕТ УрО РАН.
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RANDOM ENSEMBLES OF PARTICLES  
WITH PENTAGONAL SYMMETRY: DENSIFICATION AND PROPERTIES

A. B. Shubin*
Institute of Metallurgy, Ural Branch of the Russian Academy of Sciences,  

101 Amundsena St., Ekaterinburg,620016, Russian Federation
*E-mail: fortran@list.ru

The paper studies the densities and statistical-geometric characteristics of  random 
packings of regular pentagons on a plane. The initial ensemble was generated by ran-
dom sequential adsorption (RSA). A packing densification algorithm is proposed, which 
is a modification of the Lubachevsky-Stillinger (LS) method. The final ensemble was 
obtained by stepwise increasing the linear dimensions of 2-D particles at a fixed density 
of the square “box”. It is shown that the packing density of the final ensemble for this 
algorithm is practically independent of the density of the initial ensemble (with a total 
number of particles of about 104 or more). The maximum packing density of the starting 
ensemble of regular pentagons obtained by the RSA method was 0.54306 ± 0.00220, 
which is  in good agreement with the literature value of 0.54132. The highest (final) 
density achieved after compaction of  the starting ensemble was 0.8381  ±  0.0020 for 
pentagons. This value is close to the value found by a similar algorithm for packing hard 
disks (0.84-0.86). The correlation functions of hard disks and pentagons demonstrate 
a number of common patterns. At the same time, the “crystallization” of the ensemble 
of hard disks at  relatively high densities close to  the maximum achieved is expressed 
more sharply. At the same time, the “peaks” of the correlation function for pentagons 
(compared to disks) are expected to have a smaller height and a larger width, a more 
complex structure. Ensembles of non-convex particles with pentagonal symmetry (such 
as five-pointed stars) demonstrate significantly lower packing densities and do not com-
pact to partial “crystallization”. A relatively simple algorithm for compacting “starting” 
random packings of polygons, applied in the work, allows “compacting” two-dimen-
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sional ensembles of any polygons (without self-intersections). However, partial order-
ing and sufficiently high densities (corresponding to the beginning of “crystallization” 
of the ensemble) are achieved when using it only for convex polygonal particles.

Keywords: random packing, densification, statistical-geometric properties, pentagon 
ensemble, hard disk, star-shaped particle, maximum density, correlation function
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