Зрительные электронные протезы

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Электронные импланты в сетчатке представляют собой многообещающую технологию для частичного восстановления зрения при тяжелых нейродегенеративных заболеваниях. Их основная идея заключается в том, что они заменяют поврежденные фоторецепторы электронными устройствами, которые преобразовывают световые сигналы в электрические импульсы, стимулирующие биполярные или ганглиозные клетки сетчатки. В настоящем обзоре рассмотрены история создания этой технологии и современное состояние дел в этой области, а также различные варианты конструкций и принципы работы ретинальных имплантов.

Об авторах

М. Л. Фирсов

Институт эволюционной физиологии и биохимии им. И.М. Сеченова РАН

Автор, ответственный за переписку.
Email: Michael.Firsov@gmail.com
Россия, 194223, Санкт-Петербург, пр. Тореза 44

Список литературы

  1. Островский М.А., Кирпичников М.П. Перспективы оптогенетического протезирования дегенеративной сетчатки глаза. Биохимия. 2019. V. 84 (5). P. 634–647.
  2. Фирсов М.Л. Перспективы оптогенетического протезирования сетчатки. Журнал высшей нервной деятельности им ИП Павлова. 2017. V. 67 (5). P. 53–62.
  3. Arens-Arad T., Farah N., Lender R., Moshkovitz A., Flores T., Palanker D. Cortical Interactions between Prosthetic and Natural Vision. Current biology: CB. 2020. V. 30 (1). P. 176–182 e172. https://doi.org/10.1016/j.cub.2019.11.028
  4. Asghar S.A., Pal P., Nazeer K., Mahadevappa M. A Computational Study of Graphene as a Prospective Material for Microelectrodes in Retinal Prosthesis and Electric Crosstalk Analysis. Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual International Conference. 2020. V. 2020. P. 2291–2294. https://doi.org/10.1109/EMBC44109.2020.9176388
  5. Caspi A., Barry M.P., Patel U.K., Salas M.A., Dorn J.D., Roy A. Eye movements and the perceived location of phosphenes generated by intracranial primary visual cortex stimulation in the blind. Brain stimulation. 2021. V. 14 (4). P. 851–860. https://doi.org/10.1016/j.brs.2021.04.019
  6. Caspi A., Dorn J.D., McClure K.H., Humayun M.S., Greenberg R.J., McMahon M.J. Feasibility study of a retinal prosthesis: spatial vision with a 16-electrode implant. Archives of ophthalmology. 2009. V. 127 (4). P. 398-401. https://doi.org/10.1001/archophthalmol.2009.20
  7. Choi C., Choi M.K., Liu S., Kim M.S., Park O.K., Im C. Human eye-inspired soft optoelectronic device using high-density MoS(2)-graphene curved image sensor array. Nature communications. 2017. V. 8 (1). P. 1664. https://doi.org/10.1038/s41467-017-01824-6
  8. Chow A.Y., Chow V.Y., Packo K.H., Pollack J.S., Peyman G.A., Schuchard R. The artificial silicon retina microchip for the treatment of visionloss from retinitis pigmentosa. Archives of ophthalmology. 2004. V. 122 (4). P. 460–469. https://doi.org/10.1001/archopht.122.4.460
  9. da Cruz L., Dorn J.D., Humayun M.S., Dagnelie G., Handa J., Barale P.O. Five-Year Safety and Performance Results from the Argus II Retinal Prosthesis System Clinical Trial. Ophthalmology. 2016. V. 123 (10). P. 2248–2254. https://doi.org/10.1016/j.ophtha.2016.06.049
  10. Daschner R., Greppmaier U., Kokelmann M., Rudorf S., Rudorf R., Schleehauf S. Laboratory and clinical reliability of conformally coated subretinal implants. Biomedical microdevices. 2017. V. 19 (1). P. 7. https://doi.org/10.1007/s10544-017-0147-6
  11. Daschner R., Rothermel A., Rudorf R., Rudorf S., Stett A. Functionality and Performance of the Subretinal Implant Chip Alpha AMS. Sensors and Materials. 2018. V. 30 (2, SI). P. 179–192. https://doi.org/10.18494/SAM.2018.1726
  12. De Silva S.R., Moore A.T. Optogenetic approaches to therapy for inherited retinal degenerations. J Physiol. 2022. V. 600 (21). P. 4623–4632. https://doi.org/10.1113/JP282076
  13. Demchinsky A.M., Shaimov T.B., Goranskaya D.N., Moiseeva I.V., Kuznetsov D.I., Kuleshov D.S. The first deaf-blind patient in Russia with Argus II retinal prosthesis system: what he sees and why. Journal of neural engineering. 2019. V. 16 (2). P. 025002. https://doi.org/10.1088/1741-2552/aafc76
  14. Edwards T.L., Cottriall C.L., Xue K., Simunovic M.P., Ramsden J.D., Zrenner E. Assessment of the Electronic Retinal Implant Alpha AMS in Restoring Vision to Blind Patients with End-Stage Retinitis Pigmentosa. Ophthalmology. 2018. V. 125 (3). P. 432–443. https://doi.org/10.1016/j.ophtha.2017.09.019
  15. Eickenscheidt M., Herrmann T., Weisshap M., Mittnacht A., Rudmann L., Zeck G. An optoelectronic neural interface approach for precise superposition of optical and electrical stimulation in flexible array structures. Biosensors & bioelectronics. 2022. V. 205. P. 114090. https://doi.org/10.1016/j.bios.2022.114090
  16. Feldman T., Dontsov A., Yakovleva M., Ostrovsky M.A. Photobiology of lipofuscin granules in the retinal pigment epithelium cells of the eye: norm, pathology, age. Biophysical Reviews. 2022. V. 14 (4). P. 1051–1065. https://doi.org/10.1007/s12551-022-00989-9
  17. Ghani N., Bansal J., Naidu A., Chaudhary K.M. Long term positional stability of the Argus II retinal prosthesis epiretinal implant. BMC ophthalmology. 2023. V. 23 (1). P. 70. https://doi.org/10.1186/s12886-022-02736-w
  18. Goetz G.A., Palanker D.V. Electronic approaches to restoration of sight. Reports on progress in physics Physical Society. 2016. V. 79 (9). P. 096701. https://doi.org/10.1088/0034-4885/79/9/096701
  19. Hornig R., Zehnder T., Velikay-Parel M., Laube T., Feucht M., Richard G. The IMI retinal implant system. Artificial Sight: Basic Research, Biomedical Engineering, and Clinical Advances. 2007. V. P. 111–128. https://doi.org/10.1007/978-0-387-49331-2_6
  20. Humayun M.S., de Juan E., Jr., Weiland J.D., Dagnelie G., Katona S., Greenberg R. Pattern electrical stimulation of the human retina. Vision research. 1999. V. 39 (15). P. 2569–2576. https://doi.org/10.1016/s0042-6989(99)00052-8
  21. Humayun M.S., Weiland J.D., Fujii G.Y., Greenberg R., Williamson R., Little J. Visual perception in a blind subject with a chronic microelectronic retinal prosthesis. Vision research. 2003. V. 43 (24). P. 2573–2581. https://doi.org/10.1016/s0042-6989(03)00457-7
  22. Jiang L, Lu G., Zeng Y., Sun Y., Kang H., Burford J. Flexible ultrasound-induced retinal stimulating piezo-arrays for biomimetic visual prostheses. Nature communications. 2022. V. 13 (1). P. 3853. https://doi.org/10.1038/s41467-022-31599-4
  23. Jones B.W., Kondo M., Terasaki H., Lin Y., McCall M., Marc R.E. Retinal remodeling. Jpn J Ophthalmol. 2012. V. 56 (4). P. 289–306. https://doi.org/10.1007/s10384-012-0147-2
  24. Kleinlogel S., Vogl C., Jeschke M., Neef J., Moser T. Emerging Approaches for Restoration of Hearing and Vision. Physiol Rev. 2020. V. 100 (4). P. 1467–1525. https://doi.org/10.1152/physrev.00035.2019
  25. Lorach H., Palanker D. High resolution photovoltaic subretinal prosthesis for restoration of sight. Artificial Vision: A Clinical Guide. 2017. V. P. 115–124. https://doi.org/10.1007/978-3-319-41876-6_9
  26. Luo Y.H., da Cruz L. The Argus((R)) II Retinal Prosthesis System. Progress in retinal and eye research. 2016. V. 50. P. 89–107. https://doi.org/10.1016/j.preteyeres.2015.09.003
  27. Luo Y.H., Fukushige E., Da Cruz L. The potential of the second sight system bionic eye implant for partial sight restoration. Expert review of medical devices. 2016. V. 13 (7). P. 673–681. https://doi.org/10.1080/17434440.2016.1195257
  28. Martinez-Fernandez de la Camara C., Cehajic-Kapetanovic J., MacLaren R.E. Emerging gene therapy products for RPGR-associated X-linked retinitis pigmentosa. Expert Opinion on Emerging Drugs. 2022. V. 27 (4). P. 431–443. https://doi.org/10.1080/14728214.2022.2152003
  29. Montezuma S.R., Sun S.Y., Roy A., Caspi A., Dorn J.D., He Y. Improved localisation and discrimination of heat emitting household objects with the artificial vision therapy system by integration with thermal sensor. The British journal of ophthalmology. 2020. V. 104 (12). P. 1730–1734. https://doi.org/10.1136/bjophthalmol-2019-315513
  30. Muqit M.K., Velikay-Parel M., Weber M., Dupeyron G., Audemard D., Corcostegui B. Six-Month Safety and Efficacy of the Intelligent Retinal Implant System II Device in Retinitis Pigmentosa. Ophthalmology. 2019. V. 126 (4). P. 637–639. https://doi.org/10.1016/j.ophtha.2018.11.010
  31. Newton F., Megaw R. Mechanisms of Photoreceptor Death in Retinitis Pigmentosa. Genes (Basel). 2020. V. 11 (10). P. 1120. https://doi.org/10.3390/genes11101120
  32. Palanker D., Le Mer Y., Mohand-Said S., Muqit M., Sahel J.A. Photovoltaic Restoration of Central Vision in Atrophic Age-Related Macular Degeneration. Ophthalmology. 2020. V. 127 (8). P. 1097–1104. https://doi.org/10.1016/j.ophtha.2020.02.024
  33. Palanker D., Le Mer Y., Mohand-Said S., Sahel J.A. Simultaneous perception of prosthetic and natural vision in AMD patients. Nature communications. 2022. V. 13 (1). P. 513. https://doi.org/10.1038/s41467-022-28125-x
  34. Peterman M.C., Mehenti N.Z., Bilbao K.V., Lee C.J., Leng T., Noolandi J. The Artificial Synapse Chip: a flexible retinal interface based on directed retinal cell growth and neurotransmitter stimulation. Artificial organs. 2003. V. 27 (11). P. 975–985. https://doi.org/10.1046/j.1525-1594.2003.07307.x
  35. Pfeiffer R.L., Marc R.E., Jones B.W. Persistent remodeling and neurodegeneration in late-stage retinal degeneration. Progress in retinal and eye research. 2020. V. 74. P. 100771. https://doi.org/10.1016/j.preteyeres.2019.07.004
  36. Piri N., Grodsky J.D., Kaplan H.J. Gene therapy for retinitis pigmentosa. Taiwan J Ophthalmol. 2021. V. 11 (4). P. 348–351. https://doi.org/10.4103/tjo.tjo_47_21
  37. Rachitskaya A.V., DeBenedictis M., Yuan A. What Happened to Retinal Prostheses?: LWW; 2020. P. 803–804.
  38. Schaffrath K., Lohmann T., Seifert J., Ingensiep C., Raffelberg P., Waschkowski F. New epiretinal implant with integrated sensor chips for optical capturing shows a good biocompatibility profile in vitro and in vivo. Biomedical engineering online. 2021. V. 20 (1). P. 102. https://doi.org/10.1186/s12938-021-00938-9
  39. Shire D.B., Gingerich M.D., Wong P.I., Skvarla M., Cogan S.F., Chen J. Micro-Fabrication of Components for a High-Density Sub-Retinal Visual Prosthesis. Micromachines. 2020. V. 11 (10). P. https://doi.org/10.3390/mi11100944
  40. Song D.J., Bao X.L., Fan B., Li G.Y. Mechanism of Cone Degeneration in Retinitis Pigmentosa. Cell Mol Neurobiol. 2023. V. 43 (3). P. 1037–1048. https://doi.org/10.1007/s10571-022-01243-2
  41. Stanga P.E., Tsamis E., Siso-Fuertes I, Dorn J.D., Merlini F., Fisher A. Electronic retinal prosthesis for severe loss of vision in geographic atrophy in age-related macular degeneration: First-in-human use. European journal of ophthalmology. 2021. V. 31 (3). P. 920–931. https://doi.org/10.1177/11206721211000680
  42. Stiles N.B., Patel V.R., Weiland J.D. Multisensory perception in Argus II retinal prosthesis patients: Leveraging auditory-visual mappings to enhance prosthesis outcomes. Vision research. 2021. V. 182. P. 58–68. https://doi.org/10.1016/j.visres.2021.01.008
  43. Stingl K., Bartz-Schmidt K.U., Besch D., Braun A., Bruckmann A., Gekeler F. Artificial vision with wirelessly powered subretinal electronic implant alpha-IMS. Proceedings Biological sciences. 2013. V. 280 (1757). P. 20130077. https://doi.org/10.1098/rspb.2013.0077
  44. Stingl K., Bartz-Schmidt K.U., Besch D., Chee C.K., Cottriall C.L., Gekeler F. Subretinal Visual Implant Alpha IMS–Clinical trial interim report. Vision research. 2015. V. 111 (Pt B). P. 149–160. https://doi.org/10.1016/j.visres.2015.03.001
  45. Thomas C.J., Mirza R.G., Gill M.K. Age-related macular degeneration. Medical Clinics. 2021. V. 105 (3). P. 473–491. https://doi.org/10.1016/j.mcna.2021.01.003
  46. Wang B.Y., Chen Z.C., Bhuckory M., Huang T., Shin A., Zuckerman V. Electronic photoreceptors enable prosthetic visual acuity matching the natural resolution in rats. Nature communications. 2022. V. 13 (1). P. 6627. https://doi.org/10.1038/s41467-022-34353-y
  47. Werginz P., Wang B.Y., Chen Z.C., Palanker D. On optimal coupling of the 'electronic photoreceptors' into the degenerate retina. Journal of neural engineering. 2020. V. 17 (4). P. 045008. https://doi.org/10.1088/1741-2552/aba0d2
  48. Wu K.Y., Kulbay M., Toameh D., Xu A.Q., Kalevar A., Tran S.D. Retinitis Pigmentosa: Novel Therapeutic Targets and Drug Development. Pharmaceutics. 2023. V. 15 (2). P. 685. https://doi.org/;10.3390/pharmaceutics15020685
  49. Yu Z.H., Chen W.J., Liu X., Xia Q.Y., Yang Y.N., Dong M. Folate-Modified Photoelectric Responsive Polymer Microarray as Bionic Artificial Retina to Restore Visual Function. ACS applied materials & interfaces. 2020. V. 12 (25). P. 28759–28767. https://doi.org/10.1021/acsami.0c04058
  50. Yue L., Castillo J., Gonzalez A.C., Neitz J., Humayun M.S. Restoring Color Perception to the Blind: An Electrical Stimulation Strategy of Retina in Patients with End-stage Retinitis Pigmentosa. Ophthalmology. 2021. V. 128 (3). P. 453–462. https://doi.org/10.1016/j.ophtha.2020.08.019
  51. Zhou D.D., Dorn J.D., Greenberg R.J. The Argus® II retinal prosthesis system: An overview. 2013 IEEE international conference on multimedia and expo workshops (ICMEW); 2013. P. 1–6. https://doi.org/10.1109/ICMEW.2013.6618428
  52. Zrenner E., Bartz-Schmidt K.U., Benav H., Besch D., Bruckmann A., Gabel V.P. Subretinal electronic chips allow blind patients to read letters and combine them to words. Proceedings Biological sciences. 2011. V. 278 (1711). P. 1489–1497.
  53. Zrenner E., Miliczek K.D., Gabel V.P., Graf H.G., Guenther E., Haemmerle H. The development of subretinal microphotodiodes for replacement of degenerated photoreceptors. Ophthalmic research. 1997. V. 29 (5). P. 269–280. https://doi.org/10.1159/000268025
  54. Zrenner E., Stett A., Weiss S., Aramant R.B., Guenther E., Kohler K. Can subretinal microphotodiodes successfully replace degenerated photoreceptors? Vision research. 1999. V. 39 (15). P. 2555–2567. https://doi.org/10.1016/s0042-6989(98)00312-5

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2.

Скачать (263KB)
3.

Скачать (280KB)
4.

Скачать (327KB)

© Российская академия наук, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах