Автоматическая оценка фокусного расстояния бортовой камеры космического аппарата по видеоданным стыковки с МКС

Обложка

Цитировать

Полный текст

Аннотация

Радиотехническая система измерения параметров движения при сближении и стыковке “Курс” имеет некоторые недостатки: точность измерения при многократных переотражениях волны может падать; техническая аппаратура имеется на обоих стыкующихся аппаратах (активная и пассивная части), что является дорогостоящим; система затратна по энергетическим ресурсам. Анализ существующих зрительных систем показывает, что такие системы успешно решают задачи визуальной одометрии на БПЛА, роботах и подобных устройствах. Однако для применения таких систем необходимо знать внутренние параметры камеры (калибровка). Классическая калибровка с использованием шаблона типа “шахматная доска” трудновыполнима в космическом пространстве. В данной работе предлагаются методы оценки фокусного расстояния камеры, основанные на анализе имеющейся видеопоследовательности с отснятым процессом сближения космических аппаратов. Предложенные подходы основаны на методе максимального правдоподобия (MLE) и оценке апостериорного максимума (MAP) функционала, зависящего от углов Эйлера и фокусного расстояния. Сравнение результатов применения этих методов показывает достоинства MAP перед MLE и возможность их практического применения.

Об авторах

В. А. Зинов

Институт проблем передачи информации им. А.А. Харкевича РАН; Московский физико-технический институт

Email: konovalenko@iitp.ru
Россия, 127051, Москва, Б. Каретный пер., 19/1; Россия, 141707, Долгопрудный, Институтский пер, 9

И. А. Коноваленко

Институт проблем передачи информации им. А.А. Харкевича РАН

Автор, ответственный за переписку.
Email: konovalenko@iitp.ru
Россия, 127051, Москва, Б. Каретный пер., 19/1

Список литературы

  1. Бахшиев А.В., Кирпань Н.А., Корбан П.А. Программный комплекс определения пространственной ориентации объектов по телевизионному изображению в задаче космической стыковки. Экстремальная робототехника. 2013. С. 288–293.
  2. Богуславский А.А., Соколов С.М. Система информационного обеспечения задач сближения, стыковки, посадки космического аппарата на основе компьютерного видения. Механика, управление и информатика. 2011. № 6. С. 140–156.
  3. Бохоева Л.А., Курохтин В.Ю. Определение параметров внутренней калибровки камеры системы технического зрения. МЕХАНИКИ XXI ВЕКА. 2016. № 15. С. 133–138.
  4. Гошин Е.В., Фурсов В.А. Решение задачи автокалибровки камеры с использованием метода согласованной идентификации. Компьютерная оптика. 2012. Т. 36. № 4. С. 605–610.
  5. Коноваленко И.А., Фараджев И.А., Шемякина Ю.А. Оценка точки схода отрезков методом максимального правдоподобия. Вестник ЮУрГУ ММП. 2020. Т. 13. № 1. С. 107–117.
  6. Кунина И.А., Гладилин С.А., Николаев Д.П. Слепая компенсация радиальной дисторсии на одиночном изображении с использованием быстрого преобразования Хафа. Компьютерная оптика. 2016. Т. 40. № 3. С. 395–403.
  7. Медведев С.Б., Сайгираев Х.У., Сазонов В.В. Моделирование зон неустойчивой работы радиотехнической измерительной системы с активным ответом во время сближения и стыковки космических кораблей с международной космической станцией. Математическое моделирование. 2012. Т. 24. № 2. С. 151–160.
  8. Миллер Б.М., Степанян К.В., Попов А.К., Миллер А.Б. Навигация БПЛА на основе последовательностей изображений, регистрируемых бортовой видеокамерой. Автоматика и телемеханика. 2017. № 12. С. 141–153.
  9. Мюллер К., Дж. Атман., Троммер Г.Ф. Сопоставление изображений с широкой базовой линией и отслеживание траектории БПЛА при его приближении к окну здания. Гироскопия и навигация. 2019. Т. 27. № 4. С. 52–68.
  10. Попов А.К., Миллер А.Б., Степанян К.В., Миллер Б.М. Моделирование процесса навигации беспилотного летательного аппарата с использованием двух бортовых камер, смещенных по высоте. Сенсорные системы. 2018. Т. 2. № 1. С. 19–25.
  11. Сайгираев Х.У., Смирнов А.И., Соколов С.М., Богуславский А.А., Сазонов В.В. Автоматический мониторинг стыковки космического корабля с орбитальной станцией по видеоинформации. Препринты ИПМ им. М. В. Келдыша. 2004. № 74. С. 23.
  12. Fischler M.A., Bolles R.C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM. 1981. V. 24. № 6. P. 381–395. https://doi.org/10.1145/358669.358692
  13. Grush R. Spacex’s crew dragon capsule successfully docks to the ISS for the first time. 2019. URL: https://www.theverge.com/2019/3/3/18244501/spacex-crew-dragon-automatic-docking-international-space-station-nasa. (accessed: 2021-09-24.)
  14. Grush R. Spacex’s crew dragon successfully docks with the space station. 2020. URL: https://www.theverge.com/2020/5/31/21271269/spacex-docking-iss-crew-dragon-nasa-success. (accessed: 2021-09-25.)
  15. Hartley R. Self-calibration of stationary cameras. International Journal of Computer Vision. 1997. V. 1. № 22. P. 5–23. https://doi.org/10.1023/A:1007957826135
  16. Hartley R. In defence of the 8-point algorithm. Proc. of 5th International Conference on Computer Vision. 1995. P. 1064–1070. https://doi.org/10.1109/34.601246
  17. Heikkila J. Silven O. A four-step camera calibration procedure with implicit image correction. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 1997. V. 36. № 4. P. 1106–1112. https://doi.org/10.1109/CVPR.1997.609468
  18. Karpenko S., Konovalenko I., Miller A., Miller B., Nikolaev D. Uav control on the basis of 3d landmark bearingonly observations. Sensors. 2015. № 15. P. 29802–29820. https://doi.org/10.3390/s151229768
  19. Konovalenko I., Miller A., Miller B., Nikolaev D. Uav navigation on the basis of the feature points detection on underlying surface. In Proceedings of the 29th European Conference on Modeling and Simulation (ECMS 2015). 2015. № 15 P. 499–505. https://doi.org/10.7148/2015-0499
  20. Lowe D.G. Object recognition from local scale-invariant features. Proceedings of the Seventh IEEE International Conference on Computer Vision. 1999. V. 2. P. 1150–1157. https://doi.org/10.1109/ICCV.1999.790410
  21. Medioni G., Kang S.B. Emerging topics in computer vision. 2004. P. 654.
  22. Nelder J.A. and Mead. A simplex method for function minimization. Computer journal. 1965. № 7. P. 308–313. https://doi.org/10.1093/comjnl/7.4.308
  23. Stein G. Accurate internal camera calibration using rotation, with analysis of sources of error. Computer Vision, Proceedings, Fifth International Conference on. 1995. https://doi.org/10.1109/ICCV.1995.466781
  24. Zhang Z. A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2000. V. 22. № 11 P. 1330–1334.https://doi.org/10.1109/34.888718

Дополнительные файлы


© Российская академия наук, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».