ОДНОВРЕМЕННЫЙ МОНИТОРИНГ ЦИТОЗОЛЬНОГО И РЕТИКУЛЯРНОГО Са2+ УКАЗЫВАЕТ НА НЕОДНОРОДНОСТЬ Са2+-ДЕПО
- Авторы: Соколов В.В.1, Каймачников Н.П.1, Рогачевская О.А.1, Кабанова Н.В.1, Колесников С.С.1
-
Учреждения:
- Институт биофизики клетки РАН
- Выпуск: Том 42, № 4 (2025)
- Страницы: 332-344
- Раздел: ***
- URL: https://journals.rcsi.science/0233-4755/article/view/351633
- DOI: https://doi.org/10.31857/S0233475525040076
- ID: 351633
Цитировать
Аннотация
Об авторах
В. В. Соколов
Институт биофизики клетки РАНПущино, Московская обл., 142290 Россия
Н. П. Каймачников
Институт биофизики клетки РАН
Email: nkai@mail.ru
Пущино, Московская обл., 142290 Россия
О. А. Рогачевская
Институт биофизики клетки РАНПущино, Московская обл., 142290 Россия
Н. В. Кабанова
Институт биофизики клетки РАНПущино, Московская обл., 142290 Россия
С. С. Колесников
Институт биофизики клетки РАНПущино, Московская обл., 142290 Россия
Список литературы
- Berridge M.J. 2016. The inositol trisphosphate/calcium signaling pathway in health and disease. Physiol. Rev. 96, 1261–1296. https://doi.org/10.1152/physrev.00006.2016
- Mikoshiba K. 2015. Role of IP3 receptor signaling in cell functions and diseases. Adv. Biol. Regul. 57, 217–227. https://doi.org/10.1016/j.jbior.2014.10.001
- Prole D.L., Taylor C.W. 2019. Structure and function of IP3 receptors. Cold Spring Harb. Perspect. Biol. 11, a035063. https://doi.org/10.1101/cshperspect.a035063
- Hamada K., Mikoshiba K. 2020. IP3 receptor plasticity underlying diverse functions. Annu. Rev. Physiol. 82, 151–176. https://doi.org/10.1146/annurev-physiol-021119-034433
- Mak D.O., Foskett J.K. 2015. Inositol 1,4,5-trisphosphate receptors in the endoplasmic reticulum: A single-channel point of view. Cell Calcium 58, 67–78. https://doi.org/10.1016/j.ceca.2014.12.008
- Smith H.A., Thillaiappan N.B., Rossi A.M. 2023. IP3 receptors: An “elementary” journey from structure to signals. Cell Calcium 113, 102761. https://doi.org/10.1016/j.ceca.2023.102761
- Zampese E., Pizzo P. 2012. Intracellular organelles in the saga of Ca2+ homeostasis: Different molecules for different purposes? Cell. Mol. Life Sci. 69, 1077–1104. https://doi.org/10.1007/s00018-011-0845-9
- Berridge M.J., Bootman M.D., Roderick H.L. 2003. Calcium signalling: Dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell. Biol. 4, 517–529. https://doi.org/10.1038/nrm1155
- Carreras-Sureda A., Pihan P., Hetz C. 2018. Calcium signaling at the endoplasmic reticulum: Fine-tuning stress responses. Cell Calcium 70, 24–31. https://doi.org/10.1016/j.ceca.2017.08.004
- Kochkina E.N., Kopylova E.E., Rogachevskaja O.A., Kovalenko N.P., Kabanova N.V., Kotova P.D., Bystrova M.F., Kolesnikov S.S. 2024. Agonist-induced Ca2+ signaling in HEK-293-derived cells expressing a single IP3 receptor isoform. Cells. 13, 562. https://doi.org/10.3390/cells13070562
- Mogami H., Tepikin A.V., Petersen O.H. 1998. Termination of cytosolic Ca2+ signals: Ca2+ reuptake into intracellular stores is regulated by the free Ca2+ concentration in the store lumen. EMBO J. 17, 435–442. https://doi.org/10.1093/emboj/17.2.435
- Wang Q.C., Zheng Q., Tan H., Zhang B., Li X., Yang Y., Yu J., Liu Y., Chai H., Wang X., Sun Z., Wang J.Q., Zhu S., Wang F., Yang M., Guo C., Wang H., Zheng Q., Li Y., Chen Q., Zhou A., Tang T.S. 2016. TMCO1 is an ER Ca2+ load-activated Ca2+ channel. Cell, 165, 1454–1466. https://doi.org/10.1016/j.cell.2016.04.051
- Vais H., Wang M., Mallilankaraman K., Payne R., McKennan C., Lock J.T., Spruce L.A., Fiest C., Chan M.Y., Parker I., Seeholzer S.H., Foskett J.K., Mak D.-O.D. 2020. ER-luminal [Ca2+] regulation of InsP3 receptor gating mediated by an ER-luminal peripheral Ca2+-binding protein. Elife 9, e53531. https://doi.org/10.7554/eLife.53531
- Kodakandla G., Akimzhanov A.M., Boehning D. 2023. Regulatory mechanisms controlling store-operated calcium entry. Front. Physiol. 14, 1330259. https://doi.org/10.3389/fphys.2023.1330259
- Suzuki J., Kanemaru K., Ishii, K., Ohkura M., Okubo Y., Iino M. 2014. Imaging intraorganellar Ca2+ at subcellular resolution using CEPIA. Nat. Commun. 5, 4153. https://doi.org/10.1038/ncomms5153
- Kaimachnikov N.P., Kotova, P.D., Kochkina E.N., Rogachevskaja O.A., Khokhlov A.A., Bystrova, M.F., Kolesnikov S.S. 2021. Modeling of Ca2+ transients initiated by GPCR agonists in mesenchymal stromal cells. BBA Adv. 1, 100012. https://doi.org/10.1016/j.bbadva.2021.100012
- Berridge M.J. 2002. The endoplasmic reticulum: A multifunctional signaling organelle. Cell Calcium 32, 235–249. https://doi.org/10.1016/s0143416002001823
- Lam A.K., Galione A. 2013. The endoplasmic reticulum and junctional membrane communication during calcium signaling. Biochim. Biophys. Acta 1833, 2542–2559. https://doi.org/10.1016/j.bbamcr.2013.06.004
- Galione A., Davis L.C., Martucci L.L., Morgan A.J. 2023. NAADP-mediated Ca2+ signalling. Handb. Exp. Pharmacol. 278, 3-34. https://doi.org/10.1007/164_2022_607
- Котова П.Д., Рогачевская О.А. 2020. Клеточная тест-система с генетически кодируемыми сенсорами цитоплазматического и ретикулярного кальция. Биол. мембраны. 37, 373–380. https://doi.org/10.31857/S0233475520050072
- Туровский Е.А., Каймачников Н.П., Туровская М.В., Бережнов А.В., Дынник В.В., Зинченко В.П. 2011. Два механизма кальциевых колебаний в адипоцитах. Биол. мембраны. 28, 463–472. https://doi.org/10.1134/S199074781106016X
- Luo D., Broad L.M., Bird G.S., Putney J.W. Jr. 2001. Signaling pathways underlying muscarinic receptor-induced [Ca2+]i oscillations in HEK293 cells. J. Biol. Chem. 276, 5613–5621. https://doi.org/10.1074/jbc.M007524200
- Jing X., Chen L., Ren S., Luo D. 2011. Rational method in the repetitive calcium oscillation measurement in wild type human epithelial kidney cells. Cytotechnology. 63, 81–88. https://doi.org/10.1007/s10616-010-9332-7
- Bird G.S., Putney J.W. Jr. 2005. Capacitative calcium entry supports calcium oscillations in human embryonic kidney cells. J. Physiol. 562, 697–706. https://doi.org/10.1113/jphysiol.2004.077289
- Kotova, P.D.; Bystrova, M.F.; Rogachevskaja, O.A.; Khokhlov, A.A.; Sysoeva, V.Y.; Tkachuk, V.A.; Kolesnikov, S.S. 2018. Coupling of P2Y receptors to Ca2+ mobilization in mesenchymal stromal cells from the human adipose tissue. Cell Calcium, 71, 1–14. https://doi.org/10.1016/j.ceca.2017.11.001
- Андронов А.А., Леонтович Е.А., Гордон И.И., Майер А.Г. Качественная теория динамических систем второго порядка. 1966. М.: Наука. 568 c.
- Yang J., Zhao Z., Gu M., Feng X., Xu H. 2019. Release and uptake mechanisms of vesicular Ca2+ stores. Protein Cell 10, 8–19. https://doi.org/10.1007/s13238-018-0523-x
- Wong A.K., Capitanio P., Lissandron V., Bortolozzi M., Pozzan T., Pizzo P. 2013. Heterogeneity of Ca2+ handling among and within Golgi compartments. J. Mol. Cell Biol. 5, 266–276. https://doi.org/10.1093/jmcb/mjt024
- Li J., Wang Y. 2022. Golgi metal ion homeostasis in human health and diseases. Cells. 11, 289. https://doi.org/10.3390/cells11020289
- Pizzo P., Lissandron V., Capitanio P., Pozzan T. 2011. Ca2+ signalling in the Golgi apparatus. Cell Calcium 50, 184–192. https://doi.org/10.1016/j.ceca.2011.01.006
- Lai P., Michelangeli F. 2012. Bis(2-hydroxy-3-tert-butyl-5-methyl-phenyl)-methane (bis-phenol) is a potent and selective inhibitor of the secretory pathway Ca²+ ATPase (SPCA1). Biochem. Biophys. Res. Commun. 424, 616–619. https://doi.org/10.1016/j.bbrc.2012.07.004
- Martucci L.L., Cancela J.M. 2022. Neurophysiological functions and pharmacological tools of acidic and non-acidic Ca2+ stores. Cell Calcium 104, 102582. https://doi.org/10.1016/j.ceca.2022.102582
- Zhu M.X., Ma J., Parrington J., Calcraft P.J., Galione A., Evans A.M. 2010. Calcium signaling via two-pore channels: Local or global, that is the question. Am. J. Physiol. Cell Physiol. 298, C430–C441. https://doi.org/10.1152/ajpcell.00475.2009
- Morgan A.J., Platt F.M., Lloyd-Evans E., Galione A. 2011. Molecular mechanisms of endolysosomal Ca2+ signalling in health and disease. Biochem. J. 439, 349–374. https://doi.org/10.1042/BJ20110949
- Naylor E., Arredouani A., Vasudevan S.R., Lewis A.M., Parkesh R., Mizote A., Rosen D., Thomas J.M., Izumi M., Ganesan A., Galione A., Churchill G.C. 2009. Identification of a chemical probe for NAADP by virtual screening. Nat. Chem. Biol. 5, 220–226. https://doi.org/10.1038/nchembio.150
- Chalmers S., Nicholls D.G. 2003. The relationship between free and total calcium concentrations in the matrix of liver and brain mitochondria. J. Biol. Chem. 278, 19062–19070. https://doi.org/10.1074/jbc.M212661200
- Cox D.A., Conforti L., Sperelakis N., Matlib M.A. 1993. Selectivity of inhibition of Na+-Ca2+ exchange of heart mitochondria by benzothiazepine CGP-37157. J. Cardiovasc. Pharmacol. 21, 595–599. https://doi.org/10.1097/00005344-199304000-00013
- Ishii K., Hirose K., Iino M. 2006. Ca2+ shuttling between endoplasmic reticulum and mitochondria underlying Ca2+ oscillations. EMBO Rep. 7, 390–396. https://doi.org/10.1038/sj.embor.7400620
- Konieczny V., Tovey S.C., Mataragka S., Prole D.L., Taylor C.W. 2017. Cyclic AMP recruits a discrete intracellular Ca2+ store by unmasking hypersensitive IP3 receptors. Cell Rep. 18, 711–722. https://doi.org/10.1016/j.celrep.2016.12.058
- Pick T., Gamayun I., Tinschert R., Cavalié A. 2023. Kinetics of the thapsigargin-induced Ca2+ mobilisation: A quantitative analysis in the HEK-293 cell line. Front. Physiol. 14, 1127545. https://doi.org/10.3389/fphys.2023.1127545
Дополнительные файлы



