Изменение регуляции гистонового кода при инициации параптозоподобной гибели опухолевых клеток НЕр-2 окисленными производными дисульфирама

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Дисульфирам (ДСФ) и его окисленные производные (ДСФокси) рассматриваются в качестве возможных противоопухолевых средств. Ранее нами было установлено, что ДСФокси инициируют параптозоподобную гибель опухолевых клеток, что представляет потенциальный интерес для лечения опухолей, устойчивых к инициации апоптоза. На основе биоинформатического анализа масс-спектрометрических данных убиквитинирования белков нами было сформулировано представление о важной роли нарушения ретроградного транспорта поврежденных белков из эндоплазматического ретикулума в цитозоль в механизме инициации параптозоподобной гибели клеток. В настоящей работе обнаружено, что ДСФокси в процессе инициации параптозоподобной гибели клеток аденокарциномы человека НЕр-2 также усиливают убиквитинирование гистонов и ферментов гистонового кода. В частности, это относится к убиквитинированию гистона H2BC12, гистон-метилтрансфераз, отвечающих за транскрипцию и репарацию поврежденных участков ДНК, а также ацетилирующих и убиквитин-конъюгирующих белков. Биоинформатический анализ изменений убиквитинирования белков клеточного ядра с использованием базы данных STRING выявил в ходе этого процесса увеличение встречаемости убиквитинированных белков (функциональное обогащение) регуляции клеточного цикла, ответа клетки на повреждение ДНК и репарации ДНК, регулирование которых также зависит от гистонового кода. Это непосредственно указывает на повреждение ядра клетки и согласуется с данными конфокальной микроскопии. Полученные результаты свидетельствуют, что при инициации параптозоподобной гибели клеток посредством ДСФокси наряду с нарушением ретроградного транспорта и стрессом эндоплазматического ретикулума происходит также изменение регуляции гистонового кода, что указывает на плейотропный характер механизма инициации этой гибели клеток.

Полный текст

Доступ закрыт

Об авторах

М. Е. Соловьева

Институт теоретической и экспериментальной биофизики РАН

Автор, ответственный за переписку.
Email: m_solovieva@iteb.ru
Россия, Пущино, Московская обл., 142290

Ю. В. Шаталин

Институт теоретической и экспериментальной биофизики РАН

Email: m_solovieva@iteb.ru
Россия, Пущино, Московская обл., 142290

В. С. Акатовa

Институт теоретической и экспериментальной биофизики РАН

Email: m_solovieva@iteb.ru
Россия, Пущино, Московская обл., 142290

Список литературы

  1. Cohen I., Poręba E., Kamieniarz K., Schneider R. 2011. Histone modifiers in cancer: Friends or foes? Genes Cancer. 2 (6), 631–647. doi: 10.1177/1947601911417176.
  2. Audia J.E., Campbell R.M. Histone modifications and cancer. 2016. Cold Spring Harb. Perspect. Biol. 8 (4), a019521. doi: 10.1101/cshperspect.a019521.
  3. Карпенко Д.В., Петинати Н.А., Дризе Н.И., Бигильдеев А.Е. Роль эпигенетических модификаций ДНК и гистонов в лечении онкогематологических заболеваний. 2021. Гематол. и трансфузиол. 66 (2), 263–279. https://doi.org/10.35754/0234-5730-2021-66–2-263-279
  4. Oss-Ronen L., Sarusi T., Cohen I. 2022. Histone mono-ubiquitination in transcriptional regulation and its mark on life: Emerging roles in tissue development and disease. Cells. 11 (15), 2404. https://doi.org/10.3390/cells11152404.
  5. Кудряева А.А., Липкин В.М., Белогуров А.А. 2020.Топологические особенности моноубиквитинирования гистона H2A. Докл. РАН. Науки о жизни. 493 (1), 367–372. doi: 10.31857/S2686738920040125.
  6. Бачева А.В., Готманова Н.Н., Белогуров А.А., Кудряева А.А. 2021. Контроль генома через призму вариативности гистон-модифицирующих убиквитин-лигаз. Успехи биол. химии. 61, 155–202. doi: 10.1134/S0006297921140066.
  7. Shen E., Shulha H., Weng Z., Akbarian S. 2014. Regulation of histone H3K4 methylation in brain development and disease. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369 (1652). 20130514 doi: 10.1098/rstb.2013.0514.
  8. Wang J., Qiu Z., Wu Y. 2018. Ubiquitin regulation: The histone modifying enzyme′s story. Cells. 7 (9), 118. https://doi.org/10.3390/cells7090118
  9. Solovieva M., Shatalin Y., Odinokova I., Krestinina O., Baburina Y., Lomovskaya Y., Pankratov A., Pankratova N., Buneeva O., Kopylov A., Medvedev A., Akatov V. 2022. Disulfiram oxy-derivatives suppress protein retrotranslocation across the ER membrane to the cytosol and initiate paraptosis-like cell death. Membranes. 12 (9), 845. https://doi.org/10.3390/membranes12090845.
  10. Shimazu S., Takahata K., Tamashiro A., Yoneda F., Iida Y., Saji H. 2003. Recovery of motor function and dopaminergic parameters in a mouse model of Parkinson’s disease induced by co-administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and diethyldithiocarbamate. J. Neural. Transm. 110, 871–883. doi: 10.1007/s00702-003-0002-1.
  11. Yang C.-H., Fang I.-M., Lin C.-P., Yang C.-M., Chen M.-S. 2005. Effects of the NF-κB inhibitor pyrrolidine dithiocarbamate on experimentally induced autoimmune anterior uveitis. Invest. Ophthalmol. Vis. Sci. 46, 1339–1347. doi: 10.1167/iovs.04-0640.
  12. Castillo-Villanueva A., Rufino-González Y., Méndez S.T., Torres-Arroyo A., Ponce-Macotela M., Martínez-Gordillo M.N., Reyes-Vivas H., Oria-Hernández J. 2017. Disulfiram as a novel inactivator of Giardia lamblia triosephosphate isomerase with antigiardial potential. Int. J. Parasitol. Drugs Drug Resist. 7 (3), 425–432. doi: 10.1016/j.ijpddr.2017.11.003.
  13. Liegner K.B. 2019. Disulfiram (tetraethylthiuram disulfide) in the treatment of Lyme disease and babesiosis: report of experience in three cases. Antibiotics. 8 (2), 72. https://doi.org/10.3390/antibiotics8020072.
  14. Xing S., Bullen C.K., Shroff N.S., Shan L., Yang H.C., Manucci J.L., Bhat S., Zhang H., Margolick J.B., Quinn T.C., Margolis D.M., Siliciano J.D., Siliciano R.F. 2011. Disulfiram reactivates latent HIV-1 in a Bcl-2-transduced primary CD4+ T cell model without inducing global T cell activation. J. Virol. 85, 6060–6064. https://doi.org/10.1128/jvi.02033-10.
  15. Liu T., Wang P., Cong M., Zhao X., Zhang D., Xu H., Liu L., Jia J., You H. 2018. Diethyldithiocarbamate, an anti-abuse drug, alleviates steatohepatitis and fibrosis in rodents through modulating lipid metabolism and oxidative stress. Br.J. Pharmacol. 175, 4480–4495. doi: 10.1111/bph.14503.
  16. Jakola A.S., Werlenius K., Mudaisi M., Hylin S., Kinhult S., Bartek J. Jr, Salvesen Ø., Carlsen S.M., Strandéus M., Lindskog M., Löfgren D., Rydenhag B., Carstam L., Gulati S., Solheim O., Bartek J., Solheim T. 2018. Disulfiram repurposing combined with nutritional copper supplement as add-on to chemotherapy in recurrent glioblastoma (DIRECT): Study protocol for a randomized controlled trial. F1000Res. 15, 1797. doi: 10.12688/f1000research.16786.
  17. Kita Y., Hamada A., Saito R., Teramoto Y., Tanaka R., Takano K., Nakayama K., Murakami K., Matsumoto K., Akamatsu S., Yamasaki T., Inoue T., Tabata Y., Okuno Y., Ogawa O., Kobayashi T. 2019. Systematic chemical screening identifies disulfiram as a repurposed drug that enhances sensitivity to cisplatin in bladder cancer: A summary of preclinical studies. Br.J. Cancer. 121, 1027–1038. doi: 10.1038/s41416-019-0609-0.
  18. Ekinci E., Rohondia S., Khan R., Dou Q.P. 2019. Repurposing disulfiram as an anti-cancer agent: Updated review on literature and patents. Recent Pat. Anticancer Drug Discov. 14, 113–132. doi: 10.2174/1574892814666190514104035.
  19. Solovieva M., Shatalin Y., Odinokova I., Krestinina O., Baburina Y., Mishukov A., Lomovskaya Y., Pavlik L., Mikheeva I., Holmuhamedov E., Akatov V. 2022. Disulfiram oxy-derivatives induce entosis or paraptosis-like death in breast cancer MCF-7 cells depending on the duration of treatment. Biochim. Biophys. Acta Gen. Subj. 1866, 130184. https://doi.org/10.1016/j.bbagen.2022.130184.
  20. Burger A., Amemiya Y., Kitching R., Seth A.K. 2006. Novel RING E3 ubiquitin ligases in breast cancer. Neoplasia. 8, 689–695. https://doi.org/10.1593/neo.06469.
  21. Kona F.R., Buac D., Burger A.M. 2011. Disulfiram, and disulfiram derivatives as novel potential anticancer drugs targeting the ubiquitin-proteasome system in both preclinical and clinical studies. Curr. Cancer Drug Targets. 11, 338–346. doi: 10.2174/156800911794519798.
  22. Chen D., Cui Q.C., Yang H., Dou Q.P. 2006. Disulfiram, a clinically used anti-alcoholism drug and copper-binding agent, induces apoptotic cell death in breast cancer cultures and xenografts via inhibition of the proteasome activity. Cancer Res. 66, 10425–10433. doi: 10.1158/0008-5472.CAN-06-2126.
  23. Huang H., Liao Y., Liu N., Hua X., Cai J., Yang C., Long H., Zhao C., Chen X., Lan X. et al. 2016. Two clinical drugs deubiquitinase inhibitor auranofin and aldehyde dehydrogenase inhibitor disulfiram trigger synergistic anti-tumor effects in vitro and in vivo. Oncotarget. 19, 2796–2808. doi: 10.18632/oncotarget.6425.
  24. Lövborg H., Oberg F., Rickardson L., Gullbo J., Nygren P., Larsson R. 2006. Inhibition of proteasome activity, nuclear factor-KappaB translocation and cell survival by the antialcoholism drug disulfiram. Int. J. Cancer. 118 (6), 1577–1580. doi: 10.1002/ijc.21534.
  25. Kumari N., Jaynes P.W., Saei A., Iyengar P.V., Richard J.L.C., Eichhorn P.J.A. 2017. The roles of ubiquitin modifying enzymes in neoplastic disease. Biochim. Biophys. Acta Rev. Cancer. 1868, 456–483. doi: 10.1016/j.bbcan.2017.09.002.
  26. Buneeva O., Kopylov A., Kapitsa I., Ivanova E., Zgoda V., Medvedev A. 2018. The Effect of neurotoxin MPTP and neuroprotector isatin on the profile of ubiquitinated brain mitochondrial proteins. Cells. 7 (8), 91. https://doi.org/10.3390/cells7080091.
  27. Shatalin Y. 2022. Analysis of human carcinoma HEp-2 cell ubiquitome during the initiation of paraptosis-like death by disulfiram oxy-derivatives. Mendeley Data, V1. doi: 10.17632/fjjtrfv5rv.1 https://data.mendeley.com/datasets/fjjtrfv5rv/1
  28. Szklarczyk D., Gable A.L., Nastou K.C., Lyon D., Kirsch R., Pyysalo S., Doncheva N.T., Legeay M., Fang T., Bork P., Jensen L.J., von Mering C. 2021. The STRING database in 2021: Customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucl. Acids Res. 49 (D1), D605–D612. doi: 10.1093/nar/gkaa1074.
  29. Solovieva M.E., Shatalin Y.V., Solovyev V.V., Sazonov A.V., Kutyshenko V.P., Akatov V.S. 2019. Hydroxycobalamin catalyzes the oxidation of diethyldithiocarbamate and increases its cytotoxicity independently of copper ions. Redox Biol. 20, 28–37. doi: 10.1016/j.redox.2018.09.016.
  30. Solovieva M., Shatalin Y., Fadeev R., Krestinina O., Baburina Y., Kruglov A., Kharechkina E., Kobyakova M., Rogachevsky V., Shishkova E., Akatov V.S. 2020. Vitamin B12b enhances the cytotoxicity of diethyldithiocarbamate in a synergistic manner, inducing the paraptosis-like death of human larynx carcinoma cells. Biomolecules. 10 (1), 69. https://doi.org/10.3390/biom10010069.
  31. Wang Z., Zhang H., Liu J., Cheruiyot A., Lee J.H., Ordog T., Lou Z., You Z., Zhang Z. 2016. USP51 deubiquitylates H2AK13,15ub and regulates DNA damage response. Genes Dev. 30 (8), 946–959. doi: 10.1101/gad.271841.115.
  32. Cao J., Yan Q. 2012. Histone ubiquitination and deubiquitination in transcription, DNA damage response, and cancer. Front. Oncol. 2:26. doi: 10.3389/fonc.2012.00026.
  33. Wang H., Zhai L., Xu J., Joo H.Y., Jackson S., Erdjument-Bromage H., Tempst P., Xiong Y., Zhang Y. 2006. Histone H3 and H4 ubiquitylation by the CUL4-DDB-ROC1 ubiquitin ligase facilitates cellular response to DNA damage. Mol. Cell. 22, 383–394. doi: 10.1016/j.molcel.2006.03.035.
  34. Contrepois K., Mann C., Fenaille F. 2021. H2B type 1-K accumulates in senescent fibroblasts with persistent DNA damage along with methylated and phosphorylated forms of HMGA1. Proteomes. 9 (2), 30. doi: 10.3390/proteomes9020030.
  35. Zhu Q., Huang J., Huang H., Li H., Yi P., Kloeber J.A., Yuan J., Chen Y., Deng M., Luo K., Gao M., Guo G., Tu X., Yin P., Zhang Y., Su J., Chen J., Lou Z. 2021. RNF19A-mediated ubiquitination of BARD1 prevents BRCA1/BARD1-dependent homologous recombination. Nat. Commun. 12, 6653. https://doi.org/10.1038/s41467–021–27048–3.
  36. Xiong Y., Donovan K.A., Eleuteri N.A., Kirmani N., Yue H., Razov A., Krupnick N.M., Nowak R.P., Fischer E.S. 2021. Chemo-proteomics exploration of HDAC degradability by small molecule degraders. Cell Chem. Biol. 28 (10), 1514–1527. doi: 10.1016/j.chembiol.2021.07.002.
  37. Li S., He J., Liao X., He Y., Chen R., Chen J., Hu S., Sun J. 2023. FBXO22 inhibits metastasis in triple-negative breast cancer through ubiquitin modification of KDM5A and regulation of H3K4me3 demethylation. Cell Biol. Toxicol. 39 (4), 1641–1655. doi: 10.1007/s10565-022-09754-w.
  38. Ho S.R., Mahanic C.S., Lee Y.J., Lin W.C. 2014. RNF144A, an E3 ubiquitin ligase for DNA-PKcs, promotes apoptosis during DNA damage. Proc. Natl. Acad. Sci. USA. 111 (26), E2646–E2655. doi: 10.1073/pnas.1323107111
  39. Zhang N., Zhang Y., Qian H., Wu S., Cao L., Sun Y. 2020. Selective targeting of ubiquitination and degradation of PARP1 by E3 ubiquitin ligase WWP2 regulates isoproterenol-induced cardiac remodeling. Cell Death Differ. 27 (9), 2605–2619. doi: 10.1038/s41418-020-0523-2.
  40. Krastev D.B., Li S., Sun Y., Wicks A.J., Hoslett G., Weekes D., Badder L.M., Knight E.G., Marlow R., Pardo M.C., Yu L., Talele T.T., Bartek J., Choudhary J.S., Pommier Y., Pettitt S.J., Tutt A.N.J., Ramadan K., Lord C.J. 2022. The ubiquitin-dependent ATPase p97 removes cytotoxic trapped PARP1 from chromatin. Nat. Cell Biol. 24, 62–73. doi: 10.1038/s41556-021-00807-6.
  41. Barman P., Kaja A., Chakraborty P., Guha S., Roy A., Ferdoush J., Bhaumik S.R. 2023. A novel ubiquitin-proteasome system regulation of Sgf73/ataxin-7 that maintains the integrity of the coactivator SAGA in orchestrating transcription. Genetics. 224 (3), iyad071. doi: 10.1093/genetics/iyad071.
  42. Liu D., Zhao Z., She Y., Zhang L., Chen X., Ma L., Cui J. 2022. TRIM14 inhibits OPTN-mediated autophagic degradation of KDM4D to epigenetically regulate inflammation. Proc. Natl. Acad. Sci. USA. 119 (7), e2113454119. doi: 10.1073/pnas.2113454119.
  43. Liu Y., Zhou Y. 2022. Circ_0087960 stabilizes KDM5B by reducing SKP2 mediated ubiquitination degradation and promotes osteogenic differentiation in periodontal ligament stem cells. Regen. Ther. 19, 122–130. doi: 10.1016/j.reth.2022.01.003.
  44. Xu C., Meng F., Park K.S., Storey A.J., Gong W., Tsai Y.H., Gibson E., Byrum S.D., Li D., Edmondson R.D., Mackintosh S.G., Vedadi M., Cai L., Tackett A.J., Kaniskan H.Ü., Jin J., Wang G.G. 2022. A NSD3-targeted PROTAC suppresses NSD3 and cMyc oncogenic nodes in cancer cells. Cell Chem. Biol. 29 (3), 386–397. doi: 10.1016/j.chembiol.2021.08.004
  45. Lim H.J., Dimova N.V., Tan M.K., Sigoillot F.D., King R.W., Shi Y. 2013. The G2/M regulator histone demethylase PHF8 is targeted for degradation by the anaphase-promoting complex containing CDC20. Mol. Cell Biol. 33 (21), 4166–4180. doi: 10.1128/MCB.00689–13.
  46. Macdonald J.I., Dick F.A. 2012. Posttranslational modifications of the retinoblastoma tumor suppressor protein as determinants of function. Genes Cancer. 3 (11–12), 619–633. doi: 10.1177/1947601912473305.
  47. Liu C., Yang Q., Zhu Q., Lu X., Li M., Hou T., Li Z., Tang M., Li Y., Wang H., Yang Y., Wang H., Zhao Y., Wen H., Liu X., Mao Z., Zhu W.G. 2020. CBP mediated DOT1L acetylation confers DOT1L stability and promotes cancer metastasis. Theranostics. 10 (4), 1758–1776. doi: 10.7150/thno.39013.
  48. Ishimoto K., Kawamata N., Uchihara Y., Okubo M., Fujimoto R., Gotoh E., Kakinouchi K., Mizohata E., Hino N., Okada Y., Mochizuki Y., Tanaka T., Hamakubo T., Sakai J., Kodama T., Inoue T., Tachibana K., Doi T. 2016. Ubiquitination of lysine 867 of the human SETDB1 protein upregulates its histone H3 lysine 9 (H3K9) methyltransferase activity. PLoS One. 11 (10), e0165766. doi: 10.1371/journal.pone.0165766.
  49. Timms R.T., Tchasovnikarova I.A., Antrobus R., Dougan G., Lehner P.J. 2016. ATF7IP-mediated stabilization of the histone methyltransferase SETDB1 is essential for heterochromatin formation by the HUSH complex. Cell Rep. 17 (3), 653–659. doi: 10.1016/j.celrep.2016.09.050.
  50. Xu W., Zhang X., Liu G., Zhu M., Wu Y., Jie Z., Xie Z., Wang S., Ma Q., Fan S., Fang X. 2020. Oxidative stress abrogates the degradation of KMT2D to promote degeneration in nucleus pulposus. Biochim. Biophys. Acta Mol. Basis Dis. 1866 (10), 165888. doi: 10.1016/j.bbadis.2020.165888.
  51. de Boer E., Ockeloen C.W., Kampen R.A., Hampstead J.E., Dingemans A.J.M., Rots D., Lütje L., Ashraf T., Baker R., Barat-Houari M., Angle B., Chatron N., Denommé-Pichon A.S., Devinsky O., Dubourg C., Elmslie F., Elloumi H.Z., Faivre L., Fitzgerald-Butt S., Geneviève D., Goos J.A.C., Helm B.M., Kini U., Lasa-Aranzasti A., Lesca G., Lynch S.A., Mathijssen I.M.J., McGowan R., Monaghan K.G., Odent S., Pfundt R., Putoux A., van Reeuwijk J., Santen G.W.E., Sasaki E., Sorlin A., van der Spek P.J., Stegmann A.P.A., Swagemakers S.M.A., Valenzuela I., Viora-Dupont E., Vitobello A., Ware S.M., Wéber M., Gilissen C., Low K.J., Fisher S.E., Vissers L.E.L.M., Wong M.M.K., Kleefstra T. 2022. Missense variants in ANKRD11 cause KBG syndrome by impairment of stability or transcriptional activity of the encoded protein. Genet Med. 24 (10), 2051–2064. doi: 10.1016/j.gim.2022.06.007.
  52. Fukuura K., Inoue Y., Miyajima C., Watanabe S., Tokugawa M., Morishita D., Ohoka N., Komada M., Hayashi H. 2019. The ubiquitin-specific protease USP17 prevents cellular senescence by stabilizing the methyltransferase SET8 and transcriptionally repressing p21. J. Biol. Chem. 294 (44), 16429–16439. doi: 10.1074/jbc.RA119.009006.
  53. Butler J.S., Dent S.Y. 2013. The role of chromatin modifiers in normal and malignant hematopoiesis. Blood. 121 (16), 3076–3084. doi: 10.1182/blood-2012–10–451237.
  54. Shi Y., Lan R., Matson C., Mulligan P., Whetstine J.R., Cole P.A., Casero R.A., Shi Y. 2004. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell. 119, 941–953. doi: 10.1016/j.cell.2004.12.012.
  55. Xia M., Liu J., Wu X., Liu S., Li G., Han C., Song L., Li Z., Wang Q., Wang J., Xu T., Cao X. 2013. Histone methyltransferase Ash1l suppresses interleukin-6 production and inflammatory autoimmune diseases by inducing the ubiquitin-editing enzyme A20. Immunity. 39 (3), 470–481. doi: 10.1016/j.immuni.2013.08.016.
  56. Nowak S.J., Corces V.G. 2004. Phosphorylation of histone H3: A balancing act between chromosome condensation and transcriptional activation. Trends Genet. 20, 214–220. doi: 10.1016/j.tig.2004.02.007.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Изменения формы (а – контроль, б – D4h, в – DB1h, г – DB4h), площади клеточного ядра (д – усредненные данные по трем экспериментам) и количества Ub-белков клеточного ядра (е – данные, суммированные по трем экспериментам). Линейка – 10 мкм.

Скачать (264KB)
3. Рис. 2. Ub-белки, связанные с гистонами и регуляцией гистонового кода. а – Контроль, б – D4h, в – DB1h, г – DB4h, д – количество взаимодействующих с гистонами Ub-белков, участвующих в некоторых функционально обогащенных биологических процессах, в соответствии с базой STRING. Толщина линий указывает на степень достоверности, 0.4 – средняя, 0.7 – высокая, 0.9 – очень высокая. Все полученные группы были достоверно обогащены функциональными связями между белками по сравнению со случайным набором белков аналогичного размера (PPI enrichment p-value: 1.01 × 10⁻⁸, 2.1 × 10⁻⁷, 6.65 × 10⁻⁵ и 1.0 × 10⁻¹⁶ для контроля, D4h, DB1h и DB4h соответственно).

Скачать (618KB)

© Российская академия наук, 2024

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах