α1-Adrenergic Receptors Control the Activity of Sinoatrial Node by Modulating Transmembrane Transport of Chloride Anions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Norepinephrine (NE), which is released by sympathetic nerve endings, causes an increase in the frequency of spontaneous action potentials in the pacemaker cardiomyocytes of the sinoatrial node (SAN), also known as the “pacemaker” of the heart. This results in an increase in heart rate (HR). It is known that two types of postsynaptic adrenoreceptors (ARs), α1-AR and β-AR, can mediate the effects of NE. The role of α1-AR in the sympathetic control of heart rate and SAN automaticity, as well as the membrane mechanisms mediation the effects of α1-AR on the pacemaker, have not yet been elucidated. In this study, we utilized immunofluorescence confocal microscopy to examine the distribution of α1A-AR in the SAN of rats. Additionally, we assessed the expression of α1A-AR mRNA in the SAN tissue using RT-PCR. Furthermore, we investigated the impact of α1-AR stimulation on key functional parameters of the pacemaker, including the corrected sinus node recovery time (SNRT/cSNRT) and the SAN accommodation, using the Langendorff perfused heart technique. We also used optical mapping of the electrical activity of perfused, isolated tissue preparations to study the effect of α1-AR stimulation on the spatiotemporal characteristics of SAN excitation. We tested the effects of chloride transmembrane conductance blockade on alteration of functional parameters and pattern of SAN excitation caused by α1-AR. Fluorescent signals corresponding to α1A-AR have been identified in SAN cardiomyocytes, indicating the presence of α1A-AR at protein level. The expression of α1A-AR in SAN has been also confirmed at the mRNA level. The stimulation of α1-AR affects SAN functioning Phenylephrine (PHE) utilized as α1A-AR agonist causes a decrease in SNRT/cSNRT, as well as an acceleration of SAN accommodation. These effects were rate dependent and were observed at a high frequency of pacemaker tissue stimulation. PHE induces changes in the excitation pattern of the SAN. The effects of PHE on functional parameters and SAN excitation pattern are attenuated by Ca2+-dependent chloride channel blocker NPPB but remains unaffected by the protein kinase C inhibitor BIM. Our results suggest that cardiac α1-ARs are important for maintaining function of SAN pacemaker at high heart rates and that α1-AR signalling cascades in the SAN target Ca2+-dependent chloride channels are involved in the α1-adrenergic modulation of the electrophysiological properties of the heart pacemaker.

Full Text

Restricted Access

About the authors

Y. A. Voronina

Lomonosov Moscow State University; National Medical Research Centre of Cardiology named after academician E.I. Chazov

Author for correspondence.
Email: voronina.yana.2014@post.bio.msu.ru
Russian Federation, Moscow, 119234; Moscow, 121552

A. V. Fedorov

Lomonosov Moscow State University

Email: voronina.yana.2014@post.bio.msu.ru
Russian Federation, Moscow, 119234

M. A. Chelombitko

Belozersky Research Institute of Physico-Chemical Biology, Moscow Lomonosov State University

Email: voronina.yana.2014@post.bio.msu.ru
Russian Federation, Moscow, 119992

U. E. Piunova

Lomonosov Moscow State University

Email: voronina.yana.2014@post.bio.msu.ru
Russian Federation, Moscow, 119234

V. S. Kuzmin

Lomonosov Moscow State University; National Medical Research Centre of Cardiology named after academician E.I. Chazov

Email: voronina.yana.2014@post.bio.msu.ru
Russian Federation, Moscow, 119234; Moscow, 121552

References

  1. Chandler N., Greener I., Tellez J., Inada S., Musa H., Molenaar P., DiFrancesco D., Baruscotti M., Longhi R., Anderson R., Billeter R., Sharma V., Sigg D., Boyett M., Dobrzynski H. 2009. Molecular architecture of the human sinus node insights into the function of the cardiac pacemaker. Circulation. 119 (12), 1562–1575.
  2. Lakatta E., Maltsev V., Vinogradova T. 2010. A Coupled SYSTEM of intracellular Ca2+ clocks and surface membrane voltage clocks controls the timekeeping mechanism of the heart’s pacemaker. Circ. Res. 106 (4), 659–673.
  3. Keith A., Flack M. 1907. The form and nature of the muscular connections between the primary divisions of the vertebrate heart. J. Anat. Physiol. 41 (3), 172–189.
  4. James T. 1961. Anatomy of the human sinus node. Anat. Rec. 141 (2), 109–139.
  5. Dobrzynski H., Li J., Tellez J., Greener I., Nikolski V., Wright S., Parson S., Jones S., Lancaster M., Yamamoto M., Honjo H., Takagishi Y., Kodama I., Efimov I., Billeter R., Boyett M. 2005. Computer three-dimensional reconstruction of the sinoatrial node. Circulation. 111 (7), 846–854.
  6. Boyett M., Honjo H., Kodama I. 2000. The sinoatrial node, a heterogeneous pacemaker structure. Cardiovasc. Res. 47 (4), 658–687.
  7. Fahrenbach J., Mejia-Alvarez R., Banach K. 2007. The relevance of non-excitable cells for cardiac pacemaker function. J. Physiol. 585 (2), 565–578.
  8. Кузьмин В.С., Каменский А.А. 2021. Молекулярные механизмы онтогенеза ритмоводителя сердца у позвоночных животных. Вестник МГУ. Серия 16. Биология. 76 (4), 183–201.
  9. Csepe T., Kalyanasundaram A., Hansen B., Zhao J., Fedorov V. 2015. Fibrosis: A structural modulator of sinoatrial node physiology and dysfunction. Front. Physiol. 6, 1–9.
  10. Csepe T., Zhao J., Hansen B., Li N., Sul L., Lim P., Wang Y., Simonetti O., Kilic A., Mohler P., Janssen P., Fedorov V. 2016. Human sinoatrial node structure: 3D microanatomy of sinoatrial conduction pathways. Prog. Biophys. Mol. Biol. 120 (1–3), 164–178.
  11. Kamkin A., Kiseleva I., Wagner K., Pylaev A., Leiterer K., Theres H., Scholz H., Günther J., Isenberg G., 2002. A possible role for atrial fibroblasts in postinfarction bradycardia. Am.J. Physiol. Heart. Circ. Physiol. 282 (3), H842–849.
  12. Dobrzynski H., Boyett M., Anderson R. 2007. New insights into pacemaker activity: Promoting understanding of sick sinus syndrome. Circulation. 115 (14), 1921–1932.
  13. Fedorov V., Schuessler R., Hemphill M., Ambrosi C., Chang R., Voloshina A., Brown K., Hucker W., Efimov I. 2009. Structural and functional evidence for discrete exit pathways that connect the canine sinoatrial node and atria. Circ. Res. 104 (7), 915–923.
  14. Fedorov V., Glukhov A., Chang R. 2012. Conduction barriers and pathways of the sinoatrial pacemaker complex: Their role in normal rhythm and atrial arrhythmias. Am.J. Physiol. Heart. Circ. Physiol. 302 (9), 1773–1783.
  15. MacDonald E., Rose R., Quinn T. 2020. Neurohumoral control of sinoatrial node activity and heart rate: Insight from experimental models and findings from humans. Front. Physiol. 11, 1–26.
  16. Saito K., Suetsugu T., Oku Y., Kuroda A., Tanaka H. 1994. α 1‐Adrenoceptors in the conduction system of rat hearts. Br.J. Pharmacol. 111 (2), 465–468.
  17. Michel M., Hanft G., Groß G. 1994. Functional studies on α1‐adrenoceptor subtypes mediating inotropic effects in rat right ventricle. Br.J. Pharmacol. 111 (2), 539–546.
  18. Коротаева Ю.В., Циркин В.И. 2015. Альфа2-адренорецепторы миокарда. Изв. Коми научного центра УРО РАН. 2 (22), 57–64.
  19. Motiejunaite J., Amar L., Vidal-Petiot E. 2021. Adrenergic receptors and cardiovascular effects of catecholamines. Ann. Endocrinol. (Paris). 82 (3–4), 193–197.
  20. Saitoh H., Nomura A., Osaka M., Sasabe N., Atarashi H., Hayakawa H. 1995. Developmental changes of α1-adrenergic chronotropic action on human sinus node. Am.J. Cardiol. 76 (1–2), 89–91.
  21. Posner P., Baney R., Prestwich K. 1984. The electrophysiological actions of phenylephrine on the rabbit S-A node. Res. Commun. Chem. Pathol. Pharmacol. 44 (2), 315–318.
  22. Hewett, K., Rosen M. 1985. Developmental changes in the rabbit sinus node action potential and its response to adrenergic agonists. J. Pharmacol. Exp. Ther. 235 (2), 308–312.
  23. Hashimoto K., Chiba S., Hashimoto K. 1971. Negative chronotropic response to phenylephrine of the canine S-A node. Tohoku J. Exp. Med. 105 (1), 1–9.
  24. Khabibrakhmanov I., Ziyatdinova N., Khisamieva L., Krulova A., Zefirov T. 2019. Age-related features influence of alpha (1) — adrenoceptor stimulation on isolated rat heart. Biosci. Biotechnol. Res. Commun. 12 (5), 351–354.
  25. Khabibrakhmanov I., Ziyatdinova N., Kuptsova A., Zefirov T. 2018. Effect of α1A-adrenergic receptors stimulation to the isolated rat hearts. Res. J. Pharm., Biol. Chem. Sci. 9 (525), 525–529.
  26. Mommersteeg M., Domínguez J., Wiese C., Norden J., De Gier-De Vries C., Burch J., Kispert A., Brown N., Moorman A., Christoffels V. 2010. The sinus venosus progenitors separate and diversify from the first and second heart fields early in development. Cardiovasc. Res. 87 (1), 92–101.
  27. Ivanova A., Filatova T., Abramochkin D., Atkinson A., Dobrzynski H., Kokaeva Z., Merzlyak E., Pustovit K., Kuzmin V. 2021. Attenuation of inward rectifier potassium current contributes to the α1-adrenergic receptor-induced proarrhythmicity in the caval vein myocardium. Acta Physiol. 231 (4), 1–17.
  28. Ivanova A., Kuzmin V. 2018. Inhibition of inward rectifier potassium currents by chloroquine causes significant electrophysiological changes in the rat thoracic veins myocardium. Учен. зап. Казан. ун-та. Сер. Естеств. науки. 160 (4), 645–653.
  29. Ivanova A., Kuzmin V. 2018. Electrophysiological characteristics of the rat azygos vein under electrical pacing and adrenergic stimulation. J. Physiol. Sci. 68 (5), 617–628.
  30. Kuzmin V., Ivanova A., Potekhina V., Samoilova D., Ushenin K., Shvetsova A., Petrov A. 2021. The susceptibility of the rat pulmonary and caval vein myocardium to the catecholamine-induced ectopy changes oppositely in postnatal development. J. Physiol. 599 (11), 2803–2821.
  31. Pustovit K., Samoilova D., Abramochkin D., Filatova T., Kuzmin V. 2022. α1-adrenergic receptors accompanied by GATA4 expression are related to proarrhythmic conduction and automaticity in rat interatrial septum. J. Physiol. Biochem. 78 (4), 793–805.
  32. Gould D., Hill C. 1996. α-Adrenoceptor activation of a chloride conductance in rat iris arterioles. Am.J. Physiol. Heart. Circ. Physiol. 271 (40), 2469–2476.
  33. Lamb F., Kooy N., Lewis S. 2000. Role of Cl-channels in α-adrenoceptor-mediated vasoconstriction in the anesthetized rat. Eur. J. Pharmacol. 401 (3), 403–412.
  34. Duan D. 2013. Phenomics of cardiac chloride channels. Compr. Physiol. 3 (2), 667–692.
  35. Ramteke V., Tandan S., Kumar D., Aruna Devi R., Shukla M., Ravi Prakash V. 2009. Increased hyperalgesia by 5-nitro-2, 3-(phenylpropylamino)-benzoic acid (NPPB), a chloride channel blocker in crush injury-induced neuropathic pain in rats. Pharmacol. Biochem. Behav. 91 (3), 417–422.
  36. Glukhov A., Fedorov V., Anderson M., Mohler P., Efimov I. 2010. Functional anatomy of the murine sinus node: High-resolution optical mapping of ankyrin-B heterozygous mice. Am.J. Physiol. — Hear. Circ. Physiol. 299 (2), 482–491.
  37. Abramochkin D., Kuzmin V., Sukhova G., Rosenshtraukh L. 2009. Modulation of rabbit sinoatrial node activation sequence by acetylcholine and isoproterenol investigated with optical mapping technique. Acta Physiol. 196 (4), 385–394.
  38. Lang D., Petrov V., Lou Q., Osipov G., Efimov I. 2011. Spatiotemporal control of heart rate in a rabbit heart. J. Electrocardiol. 44 (6), 626–634.
  39. Chakraborti S., Chakraborti T., Shaw G. 2000. β-Adrenergic mechanisms in cardiac diseases: A perspective. Cell Signal. 12 (8), 499–513.
  40. Ivanova A., Filatova T., Abramochkin D., Atkinson A., Dobrzynski H., Kokaeva Z., Merzlyak E., Pustovit K., Kuzmin V. 2021. Attenuation of inward rectifier potassium current contributes to the α1-adrenergic receptor-induced proarrhythmicity in the caval vein myocardium. Acta Physiol. 231 (4), 1–17.
  41. Wu S., O’Connell T. 2015. Nuclear compartmentalization of a1-adrenergic receptor signaling in adult cardiac myocytes. J. Cardiovasc. Pharmacol. 65 (2), 91–100.
  42. Roth N., Campbell P., Caron M., Lefkowitz R., Lohse M. 1991. Comparative rates of desensitization of β-adrenergic receptors by the β-adrenergic receptor kinase and the cyclic AMP-dependent protein kinase. Proc. Natl. Acad. Sci. USA. 88 (14), 6201–6204.
  43. Mahmood A., Ahmed K., Zhang Y. 2022. β-Adrenergic receptor desensitization/down-regulation in heart failure: A friend or foe? Front. Cardiovasc. Med. 9 (July), 1–5.
  44. Motiejunaite J., Amar L., Vidal-Petiot E. 2021. Adrenergic receptors and cardiovascular effects of catecholamines. Ann. Endocrinol. (Paris). 82 (3–4), 193–197.
  45. Berg J., Yang H., Jan L. 2012. Ca2+-activated Cl-channels at a glance. J. Cell Sci. 125 (6), 1367–1371.
  46. Hume J., Duan D., Collier M., Yamazaki J., Horowitz B. 2000. Anion transport in heart. Physiol. Rev. 80 (1), 31–81.
  47. Burashnikov A., Antzelevitch C. 1999. Differences in the electrophysiologic response of four canine ventricular cell types to α1-adrenergic agonists. Cardiovasc. Res. 43 (4), 901–908.
  48. Duan D. 2009. Phenomics of cardiac chloride channels: The systematic study of chloride channel function in the heart. J. Physiol. 587 (10), 2163–2177.
  49. Tapilina S., Abramochkin D., Sukhova G., Rosenshtraukh L. 2010. Cholinergic inexcitability in the sinoatrial node of the mouse. Dokl. Biol. Sci. 435 (1), 393–397.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig 1. EGM - electrogram, S1S1 - interstimulus interval, vVFSU - sinus node function recovery time, S1 - stimulation, aa10 - duration of the 10th cardiac cycle, aaN - duration of the last cardiac cycle.

Download (150KB)
3. Fig 2. Expression of α1A-adrenoreceptors (α1A-AR) in the sinoatrial node of the rat heart. a - Representative confocal image showing fluorescent signals (red pseudocolor, Cy3) of antibodies specifically binding α1A-AR in the region of branches of the SAU artery. Endo, epi, endocardial and epicardial surface of the right atrial wall; EE, endocardial endothelium; SA, branches of the SAU artery; SMC, smooth muscle lining of the arterial wall. White arrows indicate cardiomyocytes in the central part at the periphery of the SAU expressing α1A-AR. Blue pseudocolor - cell nuclei (DAPI). b - Same as in a, but at higher magnification. c - Expression of α1A-AR mRNA transcripts in sinoatrial node (SAU) and left atrium (LA) tissue, unpaired t-test, p < 0.05.

Download (528KB)
4. Fig. 3. Effect of α1-adrenoreceptor stimulation on cardiac automaticity. a - Increase in HR of isolated rat heart during 10 μM phenylephrine (PE), paired t-test, p < 0.05. b - Effect of PE on sinus node function recovery time. c - Effect of PE on corrected sinus node function recovery time (kVVFSU), two-factor ANOVA, Holm-Sidak'a multiple comparison correction, p < 0.05. d1-g3 - Representative examples of recordings demonstrating recovery of spontaneous SAU activity (after cessation of stimulation) in control and during PE action. In all panels, top is the original recording of the atrial electrogram; bottom is the frequency of spontaneous SAU excitations. e - Effect of PE on the rate of SAU accommodation. Regression equations are shown next to the curves.

Download (427KB)
5. Fig. 4. Effect of chlorine channel blockade on α1-adrenergic effects in SAU. a - Representative examples of recordings showing the recovery of spontaneous SAU activity (after cessation of stimulation) under the action of phenylephrine (PE) (upper panel). A stepwise pattern (middle panel) of resumption of isolated heart rhythm (SAU automaticity) is observed during PE action on NPPB background. b - Effect of NPPB on PE-induced decrease, kVVFSU, two-factor ANOVA with Tukey's multiple comparison correction, p < 0.05. c - Effect of NPPB on PE-induced increase in SAU accommodation; top panel - S1S1=100 ms, bottom panel - S1S1=90 ms. One-factor ANOVA with Tukey's multiple comparison correction, p < 0.05.

Download (467KB)
6. Fig. 5. Pattern of activation of rat SAU under α1-adrenoreceptor (α1-AR) stimulation in control conditions and under the action of the chloride conductance blocker NPPB. a - Representative examples of SAU activation in control (K) and under the action of phenylephrine (PE). The localization and area of the primary activation point (*, tPA) as well as the direction of tPA displacement (arrow) during PE action are shown. b - Primary activation points of SAU in control (K, shown in green) and during PE action (shown in blue). The displacement of tPA in the direction of the superior vena cava orifice for each experiment is shown by the arrow. c - Representative example of the pattern of activation of SAU under NPPB action, as well as PE action on the background of NPPB. NPPB causes the formation of a non-excitable zone in the SAU (shown by the shading) and the displacement of the tPA outside the non-excitable zone. NPPB does not increase the TPA area under PE action. d - Frequency of spontaneous APs (top), TPA area (center), and the value of TPA displacement (bottom) in tissue preparations of SAU under PE and NPPB action, * - statistically significant (p < 0.05) difference from control, # - statistically significant (p < 0.05) difference from PE, one-factor ANOVA with Tukey's multiple comparison correction. EPV - superior vena cava, PP - right atrial auricle and borderline scallop (delineated by black dotted line), IVC - inferior vena cava, OVF - oval fossa, EC - Eustachian valve, SA - rudimentary scallop of sinoatrial valve (shown by white dotted line); the mouths of the gender veins are delineated by black dotted line.

Download (70KB)

Copyright (c) 2024 The Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies