Composite Materials Based on Polytetrafluoroethylene Microgranules and Nickel-Containing Nanoparticles: Synthesis, Composition, and Magnetic Properties

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Polymer composites with nanoparticles localized on the surface of polytetrafluoroethylene microgranules
are synthesized by the method of thermal decomposition of metal-containing nickel salts. The synthesized
nanoparticles are characterized by transmission electron microscopy (TEM) and X-ray diffraction
analysis. The size of the nanoparticles ranged from 3.5 to 8 nm, depending on the precursor. It follows from
the data obtained that the particles have a complex composition. The study of magnetic properties shows that
the system of magnetic nickel-containing nanoparticles in the samples at room temperature is in a ferromagnetic
or superparamagnetic state. The blocking temperature and coercive force are calculated for each sample.

作者简介

V. Kirillov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: kirillovladislav@gmail.com
Moscow, Russia

G. Yurkov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: kirillovladislav@gmail.com
Moscow, Russia

M. Korobov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: kirillovladislav@gmail.com
Moscow, Russia

A. Voronov

State Scientific Center of the Russian Federation Troitsk Institute of Innovation and Thermonuclear Research

Email: kirillovladislav@gmail.com
Troitsk, Russia

V. Solodilov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: kirillovladislav@gmail.com
Moscow, Russia

V. Buznik

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: kirillovladislav@gmail.com
Moscow, Russia

参考

  1. Khandel P., Yadaw R.K., Soni D.K. et al. // J. Nanostruct. Chem. 2018. V. 8. № 3. P. 217.
  2. Shwetha U.R., Rajith Kumar C.R., Kiran M.S. et al. // Molecules. 2021. V. 26. № 9. P. 2448.
  3. Сарвадий С.Ю., Гатин А.К., Гришин М.В. и др. // Хим. безопасность. 2018. Т. 2. № 2. С. 35.
  4. Sana S.S., Singh R.P., Sharma M. et al. // Curr. Pharmac. Biotechnol. 2021. V. 22. № 6. P. 808.
  5. Chaudhary R., Tanna J., Gandhare N. et al. // Adv. Mater. Lett. 2015. V. 6. P. 990.
  6. Ravindhranath K., Ramamoorty M. // Oriental J. Chem. 2017. V. 33 № 4. P. 1603.
  7. Khan S.A., Shahid S., Ayaz A. et al. // Intern. J. Nanomedicine. 2021. V. 16. P. 1757.
  8. Гатин А.К., Сарвадий С.Ю., Дохликова Н.В. и др. // Хим. физ. 2021. Т. 40. № 6. С. 3.
  9. Мамонова И.А., Бабушкина И.В. // Инфекция и иммунитет. Т. 2. № 1–2. С. 225.
  10. Cioffi N., Torsi L., Ditaranto N. et al. // Chem. Mater. 2005. V. 17. № 21. P. 5255.
  11. Алымов М.И., Сеплярский Б.С., Вадченко С.Г. и др. // Хим. физ. 2021. Т. 40. № 45.С. 85.
  12. Сычев А.Е., Вадченко С.Г., Щукин А.С. и др. // Хим. физ. 2022. Т. 41. № 1. С. 69.
  13. Гришин М.В., Гатин А.К., Дохликова Н.В. и др. // Хим. физ. 2019. Т. 38. № 1. С. 3.
  14. Дохликова Н.В., Гришин М.В., Сарвадий С.Ю., Шуб Б.Р. // Хим. физ. 2019. Т. 38. № 6. С. 77.
  15. Chaudhary J., Tailor G., Yadav B.L., Michael O. // Heliyon. 2019. V. 5. № 6. P. e01878.
  16. Гатин А.К., Гришин М.В., Сарвадий С.Ю., Шуб Б.Р. // Хим. физ. 2018. Т. 37. № 3. С. 48.
  17. Алымов М.И., Рубцов Н.М., Сеплярский Б.С. и др. // Докл. АН РФ. 2019. Т. 484. С. 48.
  18. Gubin S.P. // Colloids Surf., A. 2002. V. 202. № 2. P. 155.
  19. Gubin S.P., Yurkov G.Yu., Korobov M.S. et al. // Acta Materialia. 2005. V. 53. № 5. P. 1407.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (211KB)
3.

下载 (751KB)
4.

下载 (284KB)
5.

下载 (180KB)
6.

下载 (116KB)
7.

下载 (139KB)
8.

下载 (107KB)
9.

下载 (117KB)
10.

下载 (93KB)
11.

下载 (256KB)
12.

下载 (92KB)

版权所有 © В.Е. Кириллов, Г.Ю. Юрков, М.С. Коробов, А.С. Воронов, В.И. Солодилов, В.М. Бузник, 2023

##common.cookie##