Reactions of Halogenated Acetic and Propionic Acids with Fluorine Atoms

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Halogenated acids are of anthropogenic and natural origin and play an important role in atmospheric processes. The global distribution and high stability of halogenated acids is concerning because they are toxic, accumulate in surface waters, and pose a threat to humans and the ecosystem. Knowledge of the reaction mechanism of halogenated acids in the gas phase makes it possible to explain and control many important processes occurring in the atmosphere and during combustion. In this paper, we experimentally study the reactions of atomic fluorine with monochloroacetic, dichloroacetic, trichloroacetic, trifluoroacetic, and pentafluoropropionic acids at a pressure of 1 Torr. The experiments are carried out using a flow reactor connected to a mass spectrometer with a modulated beam. The rate constants of these reactions at room temperature are determined by the method of competing reactions (MCR) using the available published data. It is shown that in this series the fastest reaction is F + CH2ClCOOH. In addition, the temperature dependences of the rate constants are obtained for F + CF3COOH and F + C2F5COOH reactions in the ranges of 258–343 and 262–343 K, respectively.

作者简介

I. Morozov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia

Email: igormrzv@gmail.com
Россия, Москва

E. Vasiliev

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia

Email: igormrzv@gmail.com
Россия, Москва

N. Butkovskaya

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia

Email: igormrzv@gmail.com
Россия, Москва

A. Syromyatnikov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia; Lomonosov Moscow State University, Moscow, Russia

Email: igormrzv@gmail.com
Россия, Москва; Россия, Москва

P. Khomyakova

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia

Email: igormrzv@gmail.com
Россия, Москва

N. Volkov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia

Email: igormrzv@gmail.com
Россия, Москва

O. Morozova

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia

Email: igormrzv@gmail.com
Россия, Москва

S. Savilov

Lomonosov Moscow State University, Moscow, Russia; Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia

编辑信件的主要联系方式.
Email: igormrzv@gmail.com
Россия, Москва; Россия, Москва

参考

  1. Asplund G., Grimvall A., Jonsson S. // Chemosphere. 1994. V. 28. № 8. P. 1467; https://doi.org/10.1016/0045-6535(94)90241-0
  2. Hoekstra E.J. // Ibid. 2003. V. 52. № 2. P. 355; https://doi.org/10.1016/S0045-6535(03)00213-3
  3. Sidebottom H., Franklin J. // Pure Appl. Chem. 1996. V. 68. № 9. P. 1757; https://doi.org/10.1351/pac199668091757
  4. Folberth G., Pfister G., Baumgartner D. et al. // Environ. Pollut. 2003. V. 124. № 3. P. 389; https://doi.org/10.1016/S0269-7491(03)00048-4
  5. Lifongo L.L., Bowden D.J., Brimblecombe P. // Intern. J. Phys. Sci. 2010. V. 5. № 6. P. 738.
  6. Karpov G.V., Vasiliev E.S., Volkov N.D. et al. // Chem. Phys. Lett. 2020. V. 760. 138001; https://doi.org/10.1016/j.cplett.2020.138001
  7. Васильев Е.С., Карпов Г.В., Волков Н.Д. и др. // Хим. физика. 2021. Т. 40. № 3. С. 17; https://doi.org/10.31857/S0207401X20120171
  8. Pearson R., Cowles J., Hermann G. et al. // IEEE J. Quant. Electr. 1973. V. 9. № 9. P. 879; https://doi.org/10.1109/JQE.1973.1077761
  9. Vasiliev E.S., Knyazev V.D., Savelieva E.S. et al. // Chem. Phys. Lett. 2011. V. 512. № 4–6. P. 172; https://doi.org/10.1016/j.cplett.2011.07.023
  10. Vasiliev E.S., Knyazev V.D., Karpov G.V. et al. // J. Phys. Chem. A. 2014. V. 118. № 23. P. 4013; https://doi.org/10.1021/jp5029382
  11. Васильев Е.С., Карпов Г.В., Шартава Д.К. и др. // Хим. физика. 2022. Т. 41. № 5. С. 10; https://doi.org/10.31857/S0207401X22050119
  12. NIST Standard Reference Database. Number 69 / Eds. Linstron P.J., Mallard W.G. Gaithersburg: National Institute of Standards and Technology, 2018.
  13. Васильев Е.С., Сыромятников А.Г., Шартава Д.К. и др. // Хим. безопасность. 2018. Т. 2. № 1. С. 206; https://doi.org/10.25514/CHS.2018.1.12894
  14. Васильев Е.С., Морозов И.И., Хак В. и др. // Кинетика и катализ. 2006. Т. 47. № 6. С. 859.
  15. Heinemann-Fiedler P., Hoyermann K., Rohde G. // Ber. Bunsenges. Phys. Chem. 1990. V. 94. № 11. P. 1400; https://doi.org/10.1002/bbpc.199000042
  16. Platz J., Nielsen O.J., Sehested J. et al. // J. Phys. Chem. 1995. V. 99. № 17. P. 6570; https://doi.org/10.1021/j100017a044
  17. Vasiliev E.S., Morozov I.I., Karpov G.V. // Intern. J. Chem. Kinet. 2019. V. 51. № 12. P. 909; https://doi.org/10.1002/kin.21319
  18. Wallington T.J., Hurley M.D. // Ibid. 1995. V. 27. № 2. P. 189; https://doi.org/10.1002/kin.550270209
  19. Catoire V., Lesclaux R., Schneider W.F. et al. // J. Phys. Chem. 1996. V. 100. № 34. P. 14356; https://doi.org/10.1021/jp960572z
  20. Wine P.H., Wells J.R., Nicovich J.M. // Ibid. 1988. V. 92. № 8. P. 2223; https://doi.org/10.1021/j100319a028
  21. Морозов И.И., Васильев Е.С., Волков Н.Д. и др. // Хим. физика. 2022. Т. 41. № 10. С. 16; https://doi.org/10.31857/S0207401X22100089
  22. Васильев Е.С., Волков Н.Д., Карпов Г.В. и др. // Хим. физика. 2021. Т. 40. № 10. С. 30; https://doi.org/10.31857/S0207401X21100125

补充文件

附件文件
动作
1. JATS XML
2.

下载 (35KB)
3.

下载 (115KB)
4.

下载 (143KB)
5.

下载 (105KB)
6.

下载 (33KB)

版权所有 © И.И. Морозов, Е.С. Васильев, Н.И. Бутковская, А.Г. Сыромятников, П.С. Хомякова, Н.Д. Волков, О.С. Морозова, С.В. Савилов, 2023

##common.cookie##