Investigation of the Interaction of Hydrogen Fluoride with Quartz by Measuring Surface Conductivity

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The change in surface conductivity under the influence of hydrogen fluoride (HF) gas on quartz is
experimentally studied. It is shown that the surface conductivity of quartz changes by a factor of more than
108 during the reaction. Possible heterogeneous chemical processes determining the observed experimental
results are considered.

About the authors

V. Ya. Agroskin

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: agroskin@mail.ru
Chernogolovka, Russia

B. G. Bravy

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: agroskin@mail.ru
Chernogolovka, Russia

G. K. Vasiliev

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: agroskin@mail.ru
Chernogolovka, Russia

V. I. Guriev

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: agroskin@mail.ru
Chernogolovka, Russia

S. A. Kashtanov

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: agroskin@mail.ru
Chernogolovka, Russia

Yu. A. Chernyshev

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: agroskin@mail.ru
Chernogolovka, Russia

References

  1. Spierings G.A.C.M. // J. Mater. Sci. 1993. V. 28. P. 6261.
  2. Montano-Miranda G. // Dis. … doct. phil. Faculty of the department of chemical and environmental engineering in the Graduate College the university of Arizona, 2006.
  3. Hyeongsik P., Cho J.H., Jung J.H. et al. // Rev. Wet Chem., Curr. Photovolt. Res. 2017. V. 5. № 3. P. 75.
  4. Fischer A., Routzahn A., George S.M. et al. // J. Vac. Sci. Technol. 2021. V. 39. № 3.
  5. Cleiments L.D., Busse J.E., Mehta J. American Society for Testing and Materials. University of Nebraska-Lincoln, 1989.
  6. Helms C.R., Deal B.E. // J. Vac. Sci. Technol. 1992. V. 10. P. 806.
  7. Агроскин А.Я., Бравый Б.Г., Васильев Г.К. и др. // Хим. физика. 2022. Т. 41. № 7. С. 1.
  8. Лидин Р.А., Молочко В.А., Андреева Л.Л. Химические свойства неорганических веществ. М.: Химия, 2000.
  9. Yoon S.Y., Choi S.-E., Lee J.S. // J. Nanomaterials. 2013. V. 2013. Article ID 510524; https://doi.org/10.1155/2013/510524
  10. Park H., Cho J.H., Jung J.H. et al. // Curr. Photovolt. Res. 2017. V. 5. № 3. P. 75; https://doi.org/10.21218/CPR.2017.5.3.075
  11. Honeywell Fluorine Products, 101 Columbia Road Morristown, NJ 07962-1053. 2014; www.hfacid.com

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (149KB)
3.

Download (80KB)
4.

Download (53KB)
5.

Download (789KB)

Copyright (c) 2023 В.Я. Агроскин, Б.Г. Бравый, Г.К. Васильев, В.И. Гурьев, С.А. Каштанов, Ю.А. Чернышев

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies