The experiment on the ISS with low-temperature fixed points – a stage in developing high-stable on-board fixed-point blackbodies for in-flight calibrating the Earth observation IR instruments

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The in-flight experiment “Reper-Kalibr” was conducted on board the International Space Station, in which the fixed points referenced to melt transition temperatures of the gallium eutectic alloys Ga-In (~288,8 К), Ga-Sn (~293,6 К), Ga-Zn (~298,3 К) and the Ga (~302,9 K) were investigated. Investigation of zero-gravity impact on the low-temperature fixed points characteristics is required to develop an on-orbit calibration scale within the range ~(210–350) K for creating in the end high-stable on-board fixed-point blackbodies designed for the space-based IR instruments in-flight calibration. The main experimental results are the series of melt plateaus in cycles of melt – freeze of the selected substances. The experiment has shown that the selected fixed points are useful for achieving said object. The comparative analysis of the results of ground-based and in-flight stages of the experiment is performed.

作者简介

A. Burdakin

All-Russian scientific and research institute for optical and physical measurements

编辑信件的主要联系方式.
Email: eus@vniiofi.ru
俄罗斯联邦, Moscow

V. Gavrilov

All-Russian scientific and research institute for optical and physical measurements

Email: eus@vniiofi.ru
俄罗斯联邦, Moscow

A. Puzanov

All-Russian scientific and research institute for optical and physical measurements

Email: eus@vniiofi.ru
俄罗斯联邦, Moscow

E. Us

All-Russian scientific and research institute for optical and physical measurements

Email: eus@vniiofi.ru
俄罗斯联邦, Moscow

参考

  1. Ancsin J. About the reproducibility of the “melting” and “freezing” points of binary eutectics // Metrologia. 1990. V. 27. P. 89–93.
  2. Ancsin J. Al-Si eutectic: a study of its melting and freezing behavior // Metrologia. 2006. V.43. P. 60–66.
  3. Bongiovanni G., Grovini L., Marcarino P. Freezing and melting of silver-copper eutectic alloys at a very slow rates // High Temperatures-High Pressures. 1972. V. 4. № 5. P. 573–587.
  4. Burdakin A.A., Gavrilov V.R., Us E.A., Bormashov V.S. Novaya repernaya tochka orbital’noy kalibrovochnoy shkaly na baze evtekticheskogo splava In-Bi dlya primeneniya v vysokostabil’nykh opornykh bortovykh izluchatelyakh novogo pokoleniya [New fixed point of on-orbit calibration scale based on the In-Bi eutectic alloy for application in novel high-stable space-borne standard sources] // Izmeritel’naya Tekhnika. 2021. № 1. P. 32–37. (In Russian).
  5. Committee on Earth Observation Satellites (CEOS). Current and future sea surface temperature missions: Towards 2050. 2022. 16 p.
  6. Ivanova A., Gerasimov S., Elgourdou M., Renaot E. The peculiarities of phase transition of Ga-Sn eutectic alloys // Proc. 9th Int. Symposium on Temperature and Thermal Measurements in Industry and Science. Covtat-Dubrovnik. 2005. P. 267–271.
  7. Kammer D., Genau A. Voorhees P.W., Duval W.M., Hawersaat R.W., Hickman, Lorik T., Hall D. G., Frey C. A. Results from the International Space Station: Coarsening in Solid-Liquid Mixtures // 47th AIAA Aerospace Sciences Meeting Including New Horizons Forum and Aerospace Exposition. 5–8 January 2009, Orlando, Florida, 2009.
  8. Kiseleva Yu.V., Gektin Yu.M., Zaytsev A.A., Kuharsky A.V., Rublev A.N., Uspensky A.B. Interkalibrovka dannyh izmereniy v IK-kanalah skanera geostatsionarnogo meteosputnika "Elektro-L" № 1 po dannym izmereniy IK-zondirovshika AIRS [Data Inter-Calibration Technique for Infrared Channels of MSU-GS Imager with AIRS Infrared Sounder Data] // Issledovanie Zemli iz kosmosa. 2015. № 6. P. 68-78. (In Russian).
  9. Krutikov V.N., Sapritsky V.I., Khlevnoy B.B., Lisiansky B.E, Morozova S.P., Ogarev S.A., Panfilov A.S. et al. The Global Earth Observation System of Systems (GEOSS) and Metrological Support for Measuring Radiometric Properties of Objects of Observations // Metrologia. 2006. V. 43. № 2. P. S94–S97.
  10. Muller R. Calibration and Verification of Remote Sensing Instruments and Observations // Remote Sens. 2014. V. 6. P. 5692–5695.
  11. Panfilov A.S., Burdakin A.A., Ivanov V.S., Krutikov V.N., Morozova S.P., Ogarev S.A., Khlevnoy B.B., Sapritskiy V.I. Obespechenie radiometricheskoy sovmestimosti opticheskis dannyh nablyudeniya Zemli v ramkah Global’noy sistemy nablyudeniya Zemli GEOSS [Assurance of Uniformity of Earth Observation Optical Data within Global Earth Observation System of Systems (GEOSS)] // Issledovanie Zemli iz kosmosa. 2010. № 5. P. 87–94. (In Russian).
  12. Rublev A.N., Gorbarenko E.V., Golomolzin V.V., Borisov E.Y., Kiseleva Ju.V., Gektin Yu.M., Zaitsev A.A. Inter-calibration of Infrared Channels of Geostationary Meteorological Satellite Imagers // Front. Environ. Sci. 27 November 2018. V. 6.
  13. Sapritskiy V.I., Burdakin A.A., Ivanov A.I., Krutikov V.N., Lisyanskiy B.E., Lysak A.S., Morozova S.P. et al. Realizatsiya vysokostabil’nykh opornykh bortovykh izluchateley v eksperimente “Kalibr” na kosmicheskom apparate “Foton-M” № 4 [Experiment “Kalibr” on Board the “Foton-M” № 4 Spacecraft – a First Step Towards the Establishment of the High-Stable Spaceborne Standard Radiation Sources] // Issledovanie Zemli iz kosmosa. 2016. № 3. P. 85–88. (In Russian).
  14. Sapritsky V.I., Burdakin A.A., Khlevnoy B.B., Morozova S.P., Ogarev S.A., Panfilov A.S., Krutikov V.N. et al. Metrological support for climatic time series of satellite radiometric data // J. of Applied Remote Sens. 2009. V. 3. № 1. Р. 033506.
  15. Swartz W.H., Lorentz R.S., Huang P.M., Smith A.W., Deglau D.M., Liang S.X., Marcotte K.M. et al. The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat Mission: A Pathfinder for a New Measurement of Earth’s Radiation Budget // Proc. 30th Annual AIAA/USU Conf. on Small Satellites. Logan, UT. 2016.
  16. Topham S.T., Bingham G.E., Latvakoski H., Podolski I., Sychev V.S., Burdakin A. Observational study: microgravity testing of a phase-change reference on the International Space Station // npj Microgravity. 2015. V. 1. 15009.
  17. Trishchenko A.P., Fedosejevs G., Li Z., Cihlar J. Trends and uncertainties in thermal calibration of AVHRR radiometers onboard NOAA – 9 to NOAA – 16 // J. of Geophysical Research. 2002. V. 107. № D24, 4778. P. 17–1 – 17–13.
  18. Xu N., Chen L., Hu X., Zhang L., Zhang P. Assessment and Correction of on-Orbit Radiometric Calibration for FY-3 VIRR Thermal Infrared Channels // Remote Sens. 2014. V. 6. № 4. P. 2884–2897.
  19. Zemskov V.S., Rauhman M.R., Kozitsyna E.A. Osobennosti kristallizatsii mnogokomponentnyh splavov v usloviyah nevesomosti [Peculiarities of multi-component alloys crystallization in zero-gravity] // Fizika i Khimiya Obrabotki Materialov. 1985. № 5. P. 44–49. (In Russian).
  20. Zemskov V.S., Rauhman M.R., Shalimov V.P. Osobennosti kristallizatsii dvuhfaznyh splavov InSb-InBi v usloviyah nevesomosti [Peculiarities of two-phase InSb-InBi alloys crystallization in zero-gravity] // Poverhnost’, Rentgenovskie, Sinhrotronnye i Neytronnye Issledovaniya. 2001. № 10. P. 54–59. (In Russian).

版权所有 © Russian Academy of Sciences, 2024

##common.cookie##