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Abstract. The article is devoted to the study of dynamics regularities of abrasion shores of the cryolithozone 
based on complex mathematical modeling and space imagery including their signifi cance for obtaining 
information on dynamic parameters of ongoing processes based on remote sensing data. The studied landscape 
of abrasion shores is a combination of thermal cirques of di� erent ages and preservation, it develops under the 
action of processes of both the appearance of new thermal cirques and partial or complete erasure of existing 
ones due to the formation of new ones. The characteristic feature of thermal cirques is a clear arc-shaped 
boundary with the adjacent watershed surface, which is well detected on remote sensing data. The technique 
includes creating and analyzing a mathematical model of the morphological pattern changes of abrasion 
shores within the cryolithozone. The model uses the approach of the random process theory and empirical 
measurement of thermal cirques in di� erent physiographic conditions on space imagery. The combination of 
mathematical modeling with space imagery interpretation allowed us to show that in di� erent physiographic 
and geocryological conditions, a stable stationary distribution of thermal cirque sizes of abrasion shores of the 
Arctic cryolithozone is formed with a signifi cant development time in homogeneous areas. The physiographic 
and geocryological variety of di� erent sites does not prevent the existence of the limiting stationary distribution. 
Thus, the morphological pattern of the abrasion shore, being in constant change, nevertheless has a stationary 
distribution of thermal cirque sizes, their average size, and average location density, i.e., it is in a state of 
dynamic balance. The research gave a mathematical dependence between the limiting thermal cirque size 
distribution for abrasion shores and the size distribution for forming young thermal cirques. The sites' physical-
geographical, geological-geomorphological, and geocryological conditions infl uence the character of the 
stationary limit distribution through the size distribution of forming young thermal cirques. The results obtained 
allow us to predict quantitative characteristics of the thermal cirques (and consequently landslides) formation 
process, namely, the size distribution of emerging new thermal cirques and landslides, based on measurements 
of the observed thermal cirque sizes using high-resolution single-shot remote sensing data. This is essential in 
predicting the development, in particular, of shore retreat.
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INTRODUCTION

Many studies are devoted to morphological 
peculiarities of abrasion banks of cryolithozone. An 
extensive group of works is devoted to the study of 
ongoing processes in connection with bank retreat 
(Belova et al., 2001; Novikova, 2002; Pizhankova, 
Dobrynina, 2010; Aleksyutina et al., 2018; Belova et al., 
2020), landscape factors infl uencing the development 
of processes (Sovershaev, 1998; Khomutov, Leibman, 

2008; Kizyakov, 2005; Vasiliev et al. 2001), their 
connection with climatic characteristics (Leibman et al., 
2021). However, most researchers study the processes 
of development of abrasion banks of cryolithozone in 
connection with retreat, and, accordingly, the extent 
of morphological elements (thermal cirques) and its 
changes in the direction perpendicular to the shoreline 
are analyzed. At the same time, little attention has been 
paid to the study of the extent of thermal cirques along 
the coastal slope and its quantitative parameters.

USING SATELLITE INFORMATION 
ABOUT THE EARTH
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The aim of the research was to study the regularities 
of dynamics of abrasion banks of cryolithozone based 
on the complex of mathematical modeling and space 
imagery and their signifi cance for obtaining information 
on ongoing processes, including their quantitative 
parameters, using remote sensing data.

The landscape of abrasion banks with the 
development of thermal cirques is a combination of 
thermal cirques, including landslide bodies of di� erent 
ages, surfaces with the development of intensive thermo-
abrasion, erosion, rockfall and thermodenudation 
processes. A characteristic feature of thermal cirques is a 
clear arc-shaped boundary with the adjacent watershed 
surface, well interpreted on the materials of space 
surveys, the appearance of such a boundary is associated 
with the fact that the formation of a thermal cirque 
begins, as a rule, with the development of landslide 
process. It is not uncommon to also observe arc-
shaped residual areas of the watershed surface on the 

slope, corresponding to di� erent stages of landsliding. 
A typical view of the bank is presented in Fig. 1.

The study is oriented to investigate the change in the 
size of thermal cirques along the shoreline; the length 
of the chord closing the arc-shaped boundary of the 
thermal cirque with the adjacent watershed surface was 
taken as the size of the thermal cirque.

The development of shores occurs under the action 
of a complex of processes involved in the formation of 
values of the thermal cirque size, including an increase 
in the number of thermal cirques due to the formation of 
a new thermal cirque inside the boundaries of an existing 
thermal cirque with the older thermal cirque splitting into 
two parts, a decrease in the number of thermal cirques 
due to the complete erasure of thermal cirques (and, 
accordingly, their chords) when overlapping younger 
ones, partial erasure of already existing thermal cirques 
with preservation of their number due to the overlapping 
of younger ones ("lateral erasure"), the appearance 
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c

Fig. 1. Typical image of abrasion banks with the development of thermal cirques in the cryolithozone on the materials of high-
resolution visible space imagery: a, b — general view (Victorov et al., 2023), c — example of a thermal cirque.
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of a new thermal cirque on one or another thermal cirque 
("lateral erasure"), and the appearance of a new thermal 
cirque on one or another thermal cirque. 

In this case, the boundary of the coastal slope and the 
adjacent watershed surface is a system of arcs of thermal 
cirques, some of which are new, una� ected by subsequent 
erasures, and the other part is residual, preserved after 
one-, two-, three-, etc. multiple partial erasures of 
existing thermal cirques by new ones. Thus, in general, on 
the image the researcher observes at a random moment 
of time (survey) a system of di� erent-aged formations in 
constant change. In this situation the problem arises — 
how to correlate quantitative characteristics of the image 
observed on the space image with quantitative dynamic 
parameters of the ongoing process of thermal cirques 
formation, and accordingly what information about the 
process the image allows to extract.

METHODOLOGY

The methodology included the following steps:
•creation and analysis of a mathematical model of 

changes in the morphological pattern of abrasion banks 
in the cryolithozone,

•study of thermal cirque sizes in different 
physiographic conditions using satellite data.

The mathematical model of changes in the 
morphological pattern of abrasion banks in the 
cryolithozone was based on the consideration of 
ongoing changes as a random process

•study of thermocircuit sizes in different 
physiographic settings using satellite data included: 

•selection of key sites, 
•measurement of thermal cirque sizes using space 

imagery materials,
•statistical processing of the obtained characteristics 

of the morphological pattern of the coastal slope and 
analysis of the obtained results.

The key sites were selected based on the requirements 
of relative morphological homogeneity of the area and 
homogeneity of physiographic, primarily geological-
geomorphological and geocryological conditions. As 
a result, 12 sites with a length of 2.5–10.1 km were 
selected, which generally have a rectilinear strike (Fig. 2) 
and are located within the coastline of the Kanin Nose, 
Gydansky, Tazovsky and Yamal peninsulas, Kolguyev 
Island, and Khaipudyrskaya Bay.

High resolution satellite images from WorldView 3 
(0.3 m/pix resolution), GeoEye 1 (0.5 m/pix resolution), 
WorldView 2 (0.5 m/pix resolution) and several other 
satellites were used to analyze morphological features.

RESULTS

The fi rst part of the solution to the problem at hand 
is to determine the change in the probability distribution 
of thermal cirque sizes over time to assess its behavior 
with signifi cant time of abrasion bank development.
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Fig. 2. Schematic of key site locations.
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For this purpose, the model proposed earlier 
(Victorov, 2022) for the formation of the morphological 
pattern of a rectilinear long abrasion bank (L) with 
homogeneous physiographic and geocryological 
conditions was used; relative constancy in time of 
climatic conditions is also assumed. The model is based 
on the following assumptions:

— the probability of appearance of new thermal 
cirques (in the number k = 1,2...) for the time ∆u on the 
coastline segment1 ∆l  is determined only by the values 
of the time interval and the segment2

 p u u о u1( , ) ( )∆ ∆ ∆ ∆ ∆ ∆  = +λ ,
 =p u о u k � 1k ( , ) ( ),∆ ∆ ∆ ∆� � ,

where λ is the parameter corresponding to the average 
number of thermal cirques formed per unit time on the 
unit length of the coastline;

— sizes (arc chord length) of emerging thermal 
cirques do not depend on the place of their appearance 
on the site and have a constant probability distribution 
F x0( ) independent of time3.

The analysis allowed us to show (Victorov, 2022) 
that in this case the appearance of new thermal cirques 
corresponds to a Poisson random process, i.e., the 
probability of appearance of k thermal cirques at length 
l for time u is given by the expression

 P k
ul
k

e
k

ul
µ

λλ
( )

( )
!

= −  (1)

Hence, if the coastal segment of interest has the size 
∆v the probability of a single hit of the right border of 
the forming thermal cirque inside this segment during 
the time interval ∆u based on the model assumptions 
and the Poisson character of the process of appearance 
of new thermal cirques (1), is as follows

 q v u о u= +λ∆ ∆ ∆( ) (2)

and the probability of the right border of the forming 
thermal cirque not falling inside this segment is equal to

 p e vu
0
1 = −λ∆  (3)

In addition, it is shown that the probability that the 
considered thermal cirque will be neither hit nor erased 
during the time u by a forming thermal cirque with an 

1 The position of the thermal cirque is conditionally accepted 
as the position of the point at the right boundary of its chord 
(starting point).
2 о x( )∆  here and below in accordance with the usual notations — 
an infi nitely small quantity of a higher order than о x( )∆ .
3  It is assumed that the distribution F0(x) and other distributions 

in the work have fi nite mean and variance.

initial point outside the considered thermal cirque is 
given by the expression

 p e au
0
2 = −λ  (4)

where a is the mathematical expectation (average size) 
of forming (young) thermal cirques.

In the first step, we obtain an equation for the 
variation of the probability distribution of the thermal 
cirque size (chord length of the thermal cirque arc) in 
time. Let the thermal cirque dimensions at time u have 
a probability distribution F x u( , )4. Consider the behavior 
of thermal cirque for the time interval ( , )u u u+ ∆  the 
following cases are possible (Fig. 2):

a) the thermocircus remains unchanged,
b) splitting an older thermal cirque into two 

elements with erasure of some part by forming a new 
thermal cirque inside the boundaries of the existing one 
("internal erasure"), thus increasing the total number of 
thermal cirques,

c) erasure of part of the thermal cirque (and 
consequently part of the chord) due to the superposition 
of younger ones ("lateral erasure"),

d) complete erasure of the thermal cirque (and 
consequently of the chordae) at the superposition of the 
formed younger one.

The last three cases are accompanied by the 
appearance of a newly formed thermal cirque (e) at one 
or another site. 

Let the total number of thermal cirques at time u be 
n0 and the number of thermal cirques with chord less 
than x is respectively 

 n x u n F x u1 0( , ) ( , )=

Consider an existing thermal cirque with dimension 
y (chord length), introduce a coordinate system with 
zero at the right end of the chord and directed to the 
left. Determine the mathematical expectation of the 
number of thermal cirques with chord less than x at the 
moment u + ∆u.

In case (a), the fact that the thermal cirque of size 
y will be neither erased nor damaged during the time 
interval ∆u corresponds to the fulfi llment of the condition 
that the initial point of the forming thermal cirque is 
outside the existing thermal cirque, but the thermal cirque 
is not damaged (Fig. 3a). Taking into account the Poisson 
character of the process, formulas (3) and (4), as well as 
the independence of the events under consideration, the 
required probability is given by the expression

 p e a y u о ua y u
0 1= = − + +− +λ λ( ) ( ) ( )∆ ∆ ∆ .

4  It is assumed that the distribution has a fi nite mathematical 
expectation and variance, as well as partial derivatives and 
continuous mixed derivatives.
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Accordingly, the mathematical expectation of the 
number of thermal cirques with chord less than x at 
time u u+ ∆  given the number of thermal cirques n0 
at time u in case (a) can be obtained by integrating 
the probability obtained above to take into account 
all possible sizes of thermal cirques and then 
multiplying by the number of thermal cirques n0  at 
the moment u,

N x u u n n f y u a y u dy о u
x

0 0 0

0

1( , ) ( , ) ( ) ( )+ = − +[ ] +∫∆ ∆ ∆λ

 N x u u n n f y u a y u dy о u
x

0 0 0

0

1( , ) ( , ) ( ) ( )+ = − +[ ] +∫∆ ∆ ∆λ ,

where f y u( , ) is the density distribution of the thermal 
cirque size at time u.

The internal obliteration probability ((b) see above) of 
a thermal cirque of size y is determined by the fact that 
both fi rst and second boundary points of the new thermal 
cirque are inside the existing thermal cirque, with three 
possibilities b1–b3:
(b1) 0 < <y x (Fig. 3b), in any case splitting into two 
residual thermal cirques with chord less than x, and 
taking into account the equal probability of location of 
the initial point on any segment ∆v of the chord 
(assumption 1) with the probability given in expression 
(2), and taking into account the condition that the 
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Fig. 3. Di� erent types of interaction between the existing thermal cirque and the new thermal cirque being formed 
(explanations in the text); cases of interaction: a — no erasure, b, c, d — internal erasure, e, f — lateral erasure, g — complete 
erasure. Symbols: thin line — shoreline, thick line — chord of the existing thermal cirque under consideration, black point — 
initial point of the arc of the forming thermal cirque, dashed arc — arc of the forming thermal cirque, numbers — di� erent 
variants of the mutual arrangement of thermal cirques.
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chord of the new thermal cirque does not overlap the 
end point of the existing one (so that there is no lateral 
erasure), by integration we obtain the probability of 
internal erasure for the time interval ∆u 

 p u F y v dv u F v dv

y

o

y

1 0 0

0

= − = ∫∫λ λ∆ ∆( ) ( ) ;

respectively, the mathematical expectation of the 
number of thermal cirques given the number of thermal 
cirques n0  at the moment u can be obtained by 
integrating the probability obtained above to take into 
account all possible sizes of the existing thermal cirque 
(y) and taking into account the formation of two new 
thermal cirques and then multiplying by the number of 
thermal cirques n0 at the moment u,

N x u u n n u f y u F v dvdy

yx

1
1

0 0 0

00

2( , ) ( , ) ( )+ = ∫∫∆ ∆λ

(b2) x y x< < 2  (with y x x− <  (Fig. 3c), in this case, 
if the start and end points5 of the forming thermal cirque 
are on the segment [ , ]0 y x−  (Fig. 3c arcs 1 and 6), or 
the start and end points are on the segment [ , ]x y  only 
one residual thermal cirque with chord less than x is 
formed; if the initial point is on the segment [ , ]0 x  and 
the end point is on the segment [ , ]y x y−  (Fig. 3c arcs 
2–5), two thermal cirques with chord less than x are 
formed. Accordingly, determining the above 
probabilities by integration, further the mathematical 
expectation of the number of thermal cirques with 
chord less than x at time u u+ ∆  given the number of 
thermal cirques n0  at time u can be obtained by 
integrating the obtained probabilities to take into 
account all possible sizes of the thermal cirque existing 
at moment u and then multiplying by the number of 
thermal cirques n0 at moment u,

N x u u n n u f y u F y x v dv F y v F y x v1
2

0 0 0 0 01 2( , ) ( , ) ( ) [ ( ) ( )+ = ⋅ − − + − − − −∆ ∆λ ]]dv dy

y xy x

x

x

00

2 −−

∫∫∫











+

N x u u n n u f y u F y x v dv F y v F y x v1
2

0 0 0 0 01 2( , ) ( , ) ( ) [ ( ) ( )+ = ⋅ − − + − − − −∆ ∆λ ]]dv dy

y xy x

x

x

00

2 −−

∫∫∫











+

+ − + −











+∫∫

−

n u f y u F y v dv F y v dv dy о u
x

y

y x

x

0 0 02 1λ∆ ∆( , ) ( ) ( ) ( ))
x

x2

∫

+ − + −











+∫∫

−

n u f y u F y v dv F y v dv dy о u
x

y

y x

x

0 0 02 1λ∆ ∆( , ) ( ) ( ) ( ))
x

x2

∫
Transforming and simplifying, we obtain

5  Let us recall that, in accordance with the above assumption, 
the endpoint of the chord is always located to the left of the 
starting point.

N x u u n n u f y u F v dv dy о u
y x

y

x

x

1
2

0 0 0

2

2( , ) ( , ) ( ) ( )+ =














+
−
∫∫∆ ∆ ∆λ

N x u u n n u f y u F v dv dy о u
y x

y

x

x

1
2

0 0 0

2

2( , ) ( , ) ( ) ( )+ =














+
−
∫∫∆ ∆ ∆λ

(b3) 2x y<  (with x y x< −  (Fig. 3g), in this case, if the 
starting point of the forming thermal cirque is on the 
segment [ , ]0 x  and the end point is on the segment 
[ , ]0 y x−  (Fig. 3d arcs 1 and 2), or the start point is on 
the segment [ , ]x y  and the end point is on the segment 
[ , ]y x y−  (Fig. 3d arcs 5 and 6), then only one residual 
thermal cirque with chord less than x is formed; in the 
case if the initial point of the forming thermal cirque is 
on the segment [ , ]0 x  and the end point is on the segment 
[ , ]y x y−  (Fig. 3d arc 5 and 6), then only one residual 
thermal cirque with chord less than x is formed (Fig. 3d 
arc 3), then two residual thermal cirques with chord less 
than x will be formed; fi nally, if the initial and the end 
points of the forming thermal cirque are on the segment 
[ , ]x y x−  (Fig. 3d arc 4), then no residual thermal 
cirques with chord less than x will be formed. 
Accordingly, determining the above probabilities by 
integration, further the mathematical expectation of the 
number of thermal cirques with chord less than x at time 
u u+ ∆  given the number of thermal cirques n0 at time u 
can be obtained by integrating the obtained probabilities 
to take into account all possible sizes of the thermal 
cirque existing at moment u and then multiplying by the 
number of thermal cirques n0 at moment u,

N x u u n Nn u f y u F y x v dv F y v F y x1
3

0 0 0 0 01 2( , ) ( , ) ( ) [ ( ) (+ = ⋅ − − + ⋅ − − − −∆ ∆λ vv dv dy
xx

x

)]
002
∫∫∫












+

+∞

N x u u n Nn u f y u F y x v dv F y v F y x1
3

0 0 0 0 01 2( , ) ( , ) ( ) [ ( ) (+ = ⋅ − − + ⋅ − − − −∆ ∆λ vv dv dy
xx

x

)]
002
∫∫∫












+

+∞

+ ⋅ − − − −  + ⋅ −
−

−

∫n u f y u F y v F y x v dv F y v dv
y x

y

x

y x

0 0 0 01 1λ∆ ( , ) ( ) ( ) ( )∫∫∫











+

+∞

dy о u
x

( )∆
2

+ ⋅ − − − −  + ⋅ −
−

−

∫n u f y u F y v F y x v dv F y v dv
y x

y

x

y x

0 0 0 01 1λ∆ ( , ) ( ) ( ) ( )∫∫∫











+

+∞

dy о u
x

( )∆
2

Transforming and simplifying, we obtain

N x u u n n u f y u F v dv dy о u
y x

y

x

1
3

0 0 0

2

2( , ) ( , ) ( ) (+ =














+
−

+∞

∫∫∆ ∆ ∆λ ))

N x u u n n u f y u F v dv dy о u
y x

y

x

1
3

0 0 0

2

2( , ) ( , ) ( ) (+ =














+
−

+∞

∫∫∆ ∆ ∆λ ))

Summing up the mathematical expectation of the 
number of thermal cirques with chord less than x given 
the number of thermal cirques n0 at time u for all three 
variants and simplifying, we obtain for internal erasure 
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the value of the mathematical expectation of the number 
of thermal cirques with chord less than x

N x u u n n u f y u F v dvdy n u f y u F v

yx

1 0 0 0

00

0 02 2( , ) ( , ) ( ) ( , ) ( )+ = +∫∫∆ ∆ ∆λ λ ddvdy о u
y x

y

x

+
−

+∞

∫∫ ( )∆

N x u u n n u f y u F v dvdy n u f y u F v

yx

1 0 0 0

00

0 02 2( , ) ( , ) ( ) ( , ) ( )+ = +∫∫∆ ∆ ∆λ λ ddvdy о u
y x

y

x

+
−

+∞

∫∫ ( )∆

The lateral erasure probability ((c) see above) of a 
thermal cirque of size y is determined by having one 
endpoint of the newly forming thermal cirque outside 
the existing thermal cirque and the other endpoint 
inside the existing thermal cirque, with the following 
possibilities (c1–c2):

(c1) 0 < <y x (Fig. 3d), where, if the starting point 
is to the right of the existing thermal cirque, the 
probability of lateral erasure is determined by the 
condition that the size of the forming thermal cirque 
must be su�  cient to encroach on the existing thermal 
cirque, but at the same time not overlap its end point, 
so that there is no complete erasure. Given the Poisson 
nature of the process of emergence of new thermal 
cirques and the long length of the bank, the equal 
probability of lateral erasure on both the right and left 
sides, simplifying, then multiplying by the number of 
thermal cirques n0  at moment u, we obtain the 
mathematical expectation of the number of thermal 
cirques with chord less than x given the number of 
thermal cirques n0 at moment u

N x u u n n u f y u F y v F v dvdy

n

x

2
1

0 0

0

0 0

0

2

2

( , ) ( , ) ( ) ( )+ = + −  =

=

∫ ∫
+∞

∆ ∆λ

00

0

0

0

1λ∆ ∆u f y u F v dvdy о u
x y

( , ) ( ) ( )∫ ∫ −  +
N x u u n n u f y u F y v F v dvdy

n

x

2
1

0 0

0

0 0

0

2

2

( , ) ( , ) ( ) ( )+ = + −  =

=

∫ ∫
+∞

∆ ∆λ

00

0

0

0

1λ∆ ∆u f y u F v dvdy о u
x y

( , ) ( ) ( )∫ ∫ −  +

N x u u n n u f y u F y v F v dvdy

n

x

2
1

0 0

0

0 0

0

2

2

( , ) ( , ) ( ) ( )+ = + −  =

=

∫ ∫
+∞

∆ ∆λ

00

0

0

0

1λ∆ ∆u f y u F v dvdy о u
x y

( , ) ( ) ( )∫ ∫ −  +  

(c2) x y<

(Fig. 3e), in this variant, if the named conditions are 
fulfi lled, if the end point is on the segment [ , ]y x y−  
then only one thermal cirque with chord less than x is 
formed, in otherwise no residual thermal cirque with 
chord less than x is formed. Similarly to the previous 
one, we obtain the mathematical expectation of the 
number of thermal cirques with chord less than x under 
the condition of the number of thermal cirques n0 at the 
moment u
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Summing up, we obtain for lateral erasure the 
mathematical expectation of the number of thermal 
cirques with chord less than x given the number of 
thermal cirques n0 at time u expression

N x u u n n u f y u F v dvdy n u f y u
x y
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In case (d) (Fig. 3j) of complete erasure, the 
mathematical expectation of the number of thermal 
cirques is zero.

In case (e) of appearance of new thermal cirques, 
the mathematical expectation of the number of thermal 
cirques with chord less than x, given the number of 
thermal cirques n0 at the moment u appearing during 
the considered time interval on the whole length of the 
coast L, in accordance with the Poisson character of the 
process is equal to

 N x u u n L uF x4 0 0( , ) ( )+ =∆ ∆λ

Summing over all cases, and over all values of n0  
taking into account their probabilities and simplifying, 
we obtain the mathematical expectation of the number 
of thermal cirques with chord less than x at time u u+ ∆

N x u u N u F x u aF x u u u yf y u dy ux F
x

( , ) ( ) ( , ) ( , ) ( , ) [ (+ = − + + −∫∆ ∆ ∆ ∆λ λ λ
0

2 1 xx u L uF x о u, )] ( ) ( )












+ +λ ∆ ∆0

N x u u N u F x u aF x u u u yf y u dy ux F
x

( , ) ( ) ( , ) ( , ) ( , ) [ (+ = − + + −∫∆ ∆ ∆ ∆λ λ λ
0

2 1 xx u L uF x о u, )] ( ) ( )












+ +λ ∆ ∆0

N x u u N u F x u aF x u u u yf y u dy ux F
x

( , ) ( ) ( , ) ( , ) ( , ) [ (+ = − + + −∫∆ ∆ ∆ ∆λ λ λ
0

2 1 xx u L uF x о u, )] ( ) ( )












+ +λ ∆ ∆0

where N u( ) is the mathematical expectation of the total 
number of thermal cirques at time u

Going to the limit at x → +∞ given the equality for 
the average size of the thermal cirque

 h u
L

N u
yf y u dy

u
( )

( )
( , )

( )
= = =

+∞

∫
0

1
γ  (5)

where γ( )u  is the average linear density of thermal 
cirque locations along the shoreline, as well as the 
following equality from the fi niteness of the second 
order moment of the thermal cirque size distribution 
function

 lim ( , )
x

x F x u
→+∞

−[ ]  =1 0

we obtain the mathematical expectation of the total 
number of thermal cirques at time u u+ ∆
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N u u N u N u a u N u u yf y u dy о u( ) ( ) ( ) ( ) ( , ) ( )+ = − + +
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∫∆ ∆ ∆ ∆λ λ2
0

N u u N u N u a u N u u yf y u dy о u( ) ( ) ( ) ( ) ( , ) ( )+ = − + +
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∫∆ ∆ ∆ ∆λ λ2
0

.

Hence, dividing by L and ∆u and going to the limit 
at ∆u → 0 it is not di�  cult to obtain, considering (5), 
the di� erential equation for the variation of the average 
linear density of the circus arrangement 

 
d u

du
a u

γ λ λ γ( )
( )= −2 .

After its solution by standard methods for the initial 
condition γ( )0

1=
a

 (since at the initial moment there
is no superposition and erasure of thermal cirques, 
and the average size is equal to the average size of 
forming thermal cirques) the change of mathematical 
expectation of the thermocircle size with time is given 
by the following expression 

 h u
a

e au
( ) =

− −2 λ . (6)

Let's take as probability of thermocircle of size not 
more than x at moment u u+ ∆  at large number of 
thermocircles the ratio of mathematical expectation of 
number of thermal cirque with size less than x to 
mathematical expectation of total number of thermal 
cirques at the moment u u+ ∆
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Subtracting the probability value F x u( , ) at time u 
simplifying, dividing by ∆u N u( ) and going to the limit 
at ∆u → 0 we obtain the equation for the thermal cirque 
size distribution

1
2 1 2

0

0λ
дF x u
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yf y u dy x F x u F x h u F x u h u
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with the conditions at the initial moment F x F x( , ) ( )0 0=  
and F u( , )0 0=  arising from the fact that the size cannot 
be negative, the thermal cirques do not overlap at the 
initial moment, and at that moment the distribution 

corresponds to the size distribution of the new thermal 
cirques forming.

The next step is to solve the obtained equation. 
Passing to a new unknown function φ( , )x u

 φ( , ) ( , )x u F v u dv
x

= ∫
0

 (7)

changing the order of di� erentiation in the resulting 
mixed derivatives6 and integrating over x, we reduce the 
equation to the following one

1
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0

C u( ) is some function depending only on u. This 
equation can be regarded as a linear inhomogeneous 
di� erential equation on u, and when solved in standard 
way, taking into account the initial moment conditions, 
we fi nally obtain 
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The desired probability distribution of thermal cirque 
sizes can be formed according to (7) by di� erentiation 
of the obtained solution
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where

  ε λ λ( , ) exp[ ( ) ]x u xu h v dv
u

= − − ∫2
0

. 

Finally, the last step, in accordance with the task at 
hand, is to evaluate the behavior of the obtained 
distribution at large development time. Passing to the 
limit at u → +∞ in expression (8), twice using the Lopital 
rule (the conditions, as it is easy to see, are satisfi ed 
(Fichtenholtz, vol. 1, 1970. p. 151)) and the variation of 

6 The necessary conditions (Fichtenholtz, vol. 1, 1970, para. 190) 
are satisfi ed (see footnote 3).
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the average thermal cirque size with time (6), we fi nally 
obtain that there is a limit to the probability distribution 
of thermal cirque sizes, and it is equal to

 lim ( , ) ( )
( )
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a F x

x a
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0

0

x a+[ ]2

dv
 (9)

where a F x, ( )0  are, respectively, the mathematical 
expectation (mean size) and size distribution of young 
thermal cirques forming.

The second part of the task was to carry out studies 
of thermocircle sizes (chord lengths) at specifi c sites, 
including obtaining samples of chord lengths for 
thermal cirque of each site and comparing them with 
theoretical distributions to identify characteristic 
features of the distributions7. As mentioned above, 
the key sites were selected based on the requirements 
of relative morphological homogeneity of the site and 
homogeneity of physiographic, primarily geological 
and geomorphologic, conditions; thus, there are no 
signifi cant physiographic di� erences within each site. 

The slope edges were delineated on the images and 
the arc-shaped boundaries of thermal cirques with 
the adjacent watershed surface were delineated, and 
the chords of the arcs were drawn. The chords were 

7 Performed jointly with M.V. Arkhipova, V.V. Bondar, T.V. Gonikov 
(Victorov et al., 2023).

measured using ArcGIS. The obtained samples were 
compared with theoretical distributions of various types; 
the comparison was performed using the chi-square 
test (Pearson's criterion) in the Statistica program 
in compliance with the standard requirements of the 
methodology in terms of the sample volume and the 
size of partition intervals.

The sites vary considerably in terms of conditions. 
For example, according to the state geologic maps at 
a scale of 1:200 000 are composed of marine, glacial, 
lacustrine-glacial, alluvial-marine and lacustrine-
alluvial sediments from the surface; the sediments are 
represented by both sands and siltstones, gravel-pebble 
sediments, sandy loams and loams with boulders and 
pebbles, as well as silty-fi ne sandy sediments; permafrost 
rocks have both discontinuous and massive-island and 
continuous distribution. In climatic terms, the areas 
belong to either the Arctic or Subarctic belts.

The results of statistical processing for all sites are 
summarized in Table 1.

The analysis of the similarity of empirical 
distributions of chord lengths with di� erent types of 
theoretical distributions (normal, lognormal, and gamma 
distribution) gives interesting results. All twelve plots 
show agreement with the same type of distribution, the 
lognormal distribution, at a signifi cance level of 0.99. 
This is fulfi lled when there is a signifi cant di� erence 
in the values of the distribution parameters at di� erent 
sites. The gamma distribution also agrees with the 
empirical data, but slightly worse; this can be explained 
by the general similarity of the lognormal distribution 
and the gamma distribution. The normal distribution 
does not agree with the empirical data at any site. 

Table 1. Results of evaluation of compliance of samples of thermal cirque sizes at key sites with di� erent types of theoretical distributions

Plot Sample 
size

Normal distribution Lognormal distribution Gamma distribution

average
м

standard
м p logarithmic 

mean
logarithm 
standard p λ α p

KNS1 183 50 43 0.000 3.675 0.666 0.288 22.66 2.22 0.015

KNS2 181 60 43 0.000 3.881 0.639 0.241 23.18 2.57 0.010
KNS3 181 23 15 0.000 2.951 0.586 0.782 7.63 2.99 0.131
KNS4 159 46 27 0.000 3.678 0.529 0.339 12.40 3.68 0.153
JML1 108 18 11 0.000 2.751 0.504 0.574 4.71 3.81 0.314
KLG1 113 24 89 0.057 3.108 0.156 0.254 3.51 6.87 0.331
KLG2 108 25 105 0.020 3.16 0.151 0.923 3.74 6.80 0.640
KPD1 111 31 118 0.309 3.36 0.14 0.694 3.93 7.82 0.842
CSH1 290 22 115 0.000 3.004 0.235 0.015 4.91 4.60 0.037
CSH2 278 15 100 0.000 2.532 0.312 0.545 4.622 3.21 0.113
GDN1 190 14 40 0.000 2.564 0.195 0.658 2.637 5.42 0.305

GDN2 319 22 344 0.000 2.832 0.449 0.235 9.56 2.25 0.006
Note. λ — scale parameter, α — shape parameter, p — parameter of agreement of distributions (the di� erence between empirical and theoretical 
distributions is statistically signifi cant at the level of 0.99 in the case of p < 0.01). 
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Figure 4 shows examples of the correspondence 
between empirical distributions and theoretical 
lognormal distributions for di� erent sites.

OBSERVATION

Thus, mathematical modeling of the process of 
change in the morphological pattern of abrasion banks 
of the cryolithozone has shown that in different 
physical-geographical and geocryological conditions, a 
stable stationary distribution of the sizes of thermal 
cirques is formed under signifi cant development time. 
This distribution is formed in the conditions of constant 
appearance of new thermal cirques, as well as complete 
or partial (internal and lateral) erasure of existing ones; 
therefore, the distribution of thermal cirque sizes 
observed at each moment, fi rst of all, on the materials 
of space imagery, coincides with the distribution of sizes 
of new thermal cirques being formed. Thus, the 
obtained result allows us to conclude that the 
morphological pattern of the abrasion coast, being in 
constant change, nevertheless, with a signif icant 
development time, has a stationary distribution of the 
sizes of thermal cirques, their constant average size and 
average density, i.e., it is in a state of dynamic 
equilibrium. Interestingly, the analysis shows that the 
limiting distribution does not depend on the distribution 
of thermal cirque sizes at the initial moment F x( , )0 .

The  phys ica l-geo graphica l ,  geo lo g ica l-
geomorphological, and geocryological conditions do 
not a� ect the existence of the limiting distribution, 
but a� ect the character of this distribution through the 
size distribution of young thermal cirques formed; the 
relationship is described by expression (9). At the same 
time, the density of thermal cirque generation (λ) does 
not infl uence the limiting size distribution, apparently 
a� ecting only the rate of convergence to the limiting 
distribution.

It should be emphasized that we have previously 
proposed a variant of the model for the development 
of morphological pattern of abrasion banks (Victorov, 
2022), but it used a significant simplification — it 
neglected internal erosion, which greatly facilitated the 
analysis, but made it less accurate. Thus, the present 
model is a new and much better one.

Comparison of empirical distributions of observed 
thermal cirque sizes with the results of mathematical 
modeling allows us to conclude that the same type of 
size distributions of forming young thermal cirques is 
characteristic of di� erent physiographic, in particular 
geological-geomorphological and geocryological 
conditions. This follows from the uniformity of the 
observed distributions of thermal cirque sizes (lognormal 
distributions) and the established dependence between 
distribution of the sizes of forming young thermal cirques 
and the observed distributions of thermal cirque sizes 

described by expression (9). The same expression allows 
us to predict, in a more detailed analysis, the quantitative 
characteristics of the thermal cirque formation process 
(and, accordingly, of the landslides that start the 
formation of thermal cirque), namely, the size distribution 
of emerging new thermal cirques and landslides, by 
measurements of the observed sizes from the materials of 
a single high-resolution space imagery and, accordingly, 
by the probability distribution of these sizes.

The results obtained are also signifi cant in practical 
terms for predicting the development, in particular, 
the retreat, of coasts, due to the previously established 
correlations between the sizes of thermal cirques and 
the arrows of the arcs bounding them (Victorov et al., 
2023), which are closely related to the rate of retreat.

CONCLUSIONS

Abrasion shores of the cryolithozone develop under 
the action of a complex of processes including both 
increase and decrease in the number of thermal cirques 
due to the formation of new thermal cirques and, to a 
greater or lesser extent, erasure of existing ones; therefore, 
the distribution of thermal cirque sizes observed at each 
moment, fi rst of all on the materials of space imagery, 
generally does not coincide with the distribution of sizes 
of new thermal cirques being formed.

The complex of mathematical modeling and 
space methods allowed us to show that in different 
physiographic and geocryological conditions, a stable 
stationary distribution of the sizes of thermal cirques of 
abrasion shores of the Arctic cryolithozone is formed in 
di� erent physiographic and geocryological conditions 
with a signifi cant development time at homogeneous 
sites. Di� erences in the conditions of di� erent sites do 
not a� ect the fact of existence of the limiting stationary 
distribution. Thus, the morphological pattern of the 
abrasion shore, being in constant change, nevertheless 
has a stationary distribution of the sizes of thermal 
cirques, their constant average size and average density, 
i.e. it is in a state of dynamic equilibrium. 

The dependence of stable stationary distribution of 
abrasion bank thermal cirque sizes on the size distribution 
of forming young thermal cirques is obtained. Physical-
geographical, geological-geomorphological and 
geocryological conditions of the sites inf luence the 
character of the stationary limiting distribution through 
the size distribution of young thermal cirques forming.

Comparison of empirical distributions of thermal 
cirque sizes observed from space imagery with the 
results of mathematical modeling allows us to conclude 
that di� erent physiographic, in particular, geological-
geomorphological and geocryological conditions are 
characterized by the same type of size distribution of 
forming young thermal cirques; the conditions a� ect 
only the values of distribution parameters.
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The obtained results make it possible to predict 
the quantitative characteristics of the thermal cirque 
formation process, namely, the size distribution of 
emerging new thermal cirques, based on measurements 
of the observed thermal cirque sizes using the materials 

of a single high-resolution space imagery; this is 
essential in forecasting the development, in particular, 
the coastal retreat due to the existing correlation 
between the thermal cirque sizes and the arrows of the 
arcs bounding them.
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Fig. 4. Examples of correspondence between empirical distributions (blue contour) and theoretical lognormal distributions 
(red line) for key sites (a — KNS1, b — KNS3, c — JML1, d — KLG1, e — KHPD1)
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