Mechanisms of Translation of Deep-Seated Pulses into External Shells of the Modern Earth: Evidence from Late Cenozoic Global Tectonomagmatic Activation of Our Planet

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

It is known that the Earth’s history is characterized by periodic activation of tectonomagmatic processes, when they are intensified without visible reasons. This is obviously related to the evolution of deep-seated petrological processes, the peculiar reflect of which are events in the external shells of the modern Earth (tectonosphere), but the nature of these processes and mechanisms of their translation in tectonosphere remain weakly studied. This problem is considered by the Late Cenozoic (Neogene–Quaternary) global activation. The modern Earth represents a cooling body with solidifying liquid iron core. This process should be accompanied by several thermodynamic, physical, and physical-chemical effects, which could lead to the internal activation of our planet. We attempted to decipher these problems using available geological, petrological, geochemical, and geophysical data on the present-day activation. It is shown that main active element in the modern Earth is uninterruptedly upward moving thin crystallization zone located between completely solidified part of the core (solid inner core) and its completely liquid part (external liquid core). Diverse phase transitions in a cooling melt passing through bifurcation points are related to this zone. The phase transitions are represented by both a change of crystallizing solid phases which built up inner core and retrograde boiling with formation of drops of “core” fluids. These drops are floated in high-Fe host melt and are accumulated at the mantle base, where they are involved in the formation of mantle plumes, which are the main carriers of deep-seated pulsed into external geosphere, and finally leave the core with them. It is suggested that in one of such points the fluid solubility in cooling high-Fe liquid of external core sharply decreases. This should lead to the simultaneous intensification of retrograde boiling of this melt over the entire zone surface of zone of the core crystallization zone, i.e., on a global scale. This could provide the influx of excess “core” fluids required for large-scale generation of mantle plumes and serve as trigger for Late Cenozoic global tectonomagmatic activation of the Earth.

作者简介

E. Sharkov

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences (IGEM RAS)

编辑信件的主要联系方式.
Email: esharkov@mail.ru
Russia, 119017, Moscow, Staromonetny lane, 35

M. Bogina

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences (IGEM RAS)

Email: esharkov@mail.ru
Russia, 119017, Moscow, Staromonetny lane, 35

A. Chistyakov

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences (IGEM RAS)

Email: esharkov@mail.ru
Russia, 119017, Moscow, Staromonetny lane, 35

参考

  1. Альтшулер Л.В., Симаков Г.В., Трунин Р.Ф. К вопросу о химическом составе ядра Земли // Изв. АН СССР. Физика Земли. 1968. Т. 1. С. 3‒6.
  2. Богатиков О.А., Коваленко В.И., Шарков Е.В. Магматизм, тектоника, геодинамика Земли. Связь во времени и в пространстве. М.: Наука, 2010. 605 с.
  3. Добрецов Н.Л., Кирдяшкин А.Г., Кирдяшкин А.А. Глубинная геодинамика / 2-е издание. Новосибирск: Наука-ГЕО, 2001. 409 с.
  4. Ионов Д.А. Глубинные включения ультрамафитов в базальтах // Магматические горные породы. Т. 5. Ультраосновные породы / Под ред. Е.Е. Лазько, Е.В. Шаркова. М.: Наука, 1988. С. 310–338.
  5. Ландсберг Г.С. Элементарный учебник физики. Т. 1. Механика, теплота, молекулярная физика. М.: Физматлит, 2018. 612 с.
  6. Сорохтин О.Г. Жизнь Земли. М., Ижевск: Институт компьютерных исследований, 2007. 450 с.
  7. Уэйджер Л.П., Браун Г. Расслоенные изверженные породы. М.: Мир, 1970. 552 с.
  8. Хаин В.Е. Общая геотектоника / Изд. 2. М.: Недра, 1973. 511 с.
  9. Шарков Е.В. Формирование расслоенных интрузивов и связанного с ними оруденения. М.: Научный мир, 2006. 364 с.
  10. Шарков Е.В., Богатиков О.А. Позднекайнозойская глобальная активизация геологических процессов Земли ‒ тектономагматические аспекты // Изв. АН СССР. Сер. геол. 1987. № 10. С. 3‒21.
  11. Шарков Е.В., Богатиков О.А. Эволюция тектономагматических процессов Земли и Луны // Геотектоника. 2010. № 2. С. 3‒22.
  12. Шарков Е.В., Богатиков О.А. Взаимодействие растекающейся головы мантийного плюма с древней литосферой: результаты изучения глубинных ксенолитов в базальтах и лампрофировых диатремах Западной Сирии // Геология и геофизика. 2019. Т. 60. № 7. С. 899‒915.
  13. Шарков Е.В., Богина М.М., Чистяков А.В., Злобин В.Л. Эволюция крупных изверженных провинций в истории Земли (на примере восточной части Балтийского щита) // Вулканология и сейсмология. 2020. № 5. С. 51–66.
  14. Шарков Е.В., Чистяков А.В. Коронарные структуры в феррогабброидах Елетьозерского интрузивного комплекса (Северная Карелия, Россия) как свидетельство существования богатого Fe расплава. 1. Разновидности корон // Геохимия. 2017а. № 6. С. 513‒526.
  15. Шарков Е.В., Чистяков А.В. Коронарные структуры в феррогабброидах Елетьозерского интрузивного комплекса (Северная Карелия, Россия) как свидетельство существования богатого Fe расплава. 2. Происхождение высокожелезистой жидкости // Геохимия. 2017б. № 7. С. 609–617.
  16. Шарков Е.В., Богатиков О.А. Взаимодействие растекающейся головы мантийного плюма с древней литосферой: результаты изучения глубинных ксенолитов в базальтах и лампрофировых диатремах Западной Сирии // Геология и геофизика. 2019. Т. 60. № 7. С. 899‒915.
  17. Шарков Е.В., Прокофьев В.Ю., Чистяков А.В., Богина М.М., Горностаева Т.А. Мегакристы “пузырчатого” керсутита в неоген-четвертичных вулканитах северо-западной Сирии: свидетельства кристаллизации в кипящем расплаве/флюиде // Вулканология и сейсмология. 2022. № 3. С. 60‒80.
  18. Allegre C.J., Poirier J.-P., Humler E., Hofmann A.W. The chemical composition of the Earth // Earth Planet. Sci. Lett. 1995. V. 134. P. 515‒214.
  19. Biggin A.J., Piispa E.J., Pesonen L J., Holme R., Paterson G.A., Veikkolainen T., Tauxe L. Palaeomagnetic field intensity variations suggest Mesoproterozoic inner-core nucleation // Nature. 2015. V. 526. P. 245–248.
  20. Brandon A.D., Norman M.D., Walker R.J., Morgan J.W. 186Os‒187Os systematics of Hawaiian picrites // Earth Pla-net. Sci. Lett. l999. V. 174. P. 25‒42.
  21. Ciborowski T.J.R., Minifie M.J., Kerr A.C., Ernst R.E., Baragar B., Millar I.L. A mantle plume origin for the Palaeo-proterozoic Circum-Superior Large Igneous Province // Precambrian Res. 2017. V. 294. P. 189‒213.
  22. Dejan P., Jacob D.E., Foley S.F. Recycling plus: A new recipe for the formation of Alpine–Himalayan orogenic mantle lithosphere // Earth and Planet. Sci. Lett. 2013. V. 362. P. 187–197.
  23. Dineley D.L. Miocene / Eds P.L. Hancock, B.J. Skinner // Oxford Companion to the Earth. Oxford: Oxford University Press, 2000. P. 694–695.
  24. Downes H. Formation and modification of the shallow sub-continental lithospheric mantle: a review of geochemical evidence from ultramafic xenolith suites and tectonically emplaced ultramafic massifs of Western and Central Europe // Journal of Petrology. 2001. V. 41. P. 233‒250.
  25. Ernst R.E. Large Igneous Provinces. Cambridge: Camb-ridge Univ. Press, 2014. 653 p.
  26. Ghosh D., Maiti G., Mandal N., Baruah A. Cold plumes initiated by Rayleigh-Taylor instabilities in subduction zones, and their characteristic volcanic distributions: the role of slab dip // American Geophysical Union. 2020. https://doi.org/10.1029/2020JB019814
  27. Hirose K., Lay T. Discovery of post-perovskite and new views in the core-mantle boundary region // Elements. 2008. V. 4. № 3. P. 183‒189.
  28. Ionov D.A., O’Reily S.Y., Genshaft Y.S., Kopylova M.G. Carbonate-bearing mantle peridotite xenoliths from Spitsbergen: phase relationships, mineral compositions and trace-element residence // Contrib. Miner. Petrol. 1996. V. 125. № 4. P. 375‒392.
  29. Jackson E.D. Primary textures and mineral associations in the Ultramafic zone in the Stillwater complex, Montana // US Geol. Surv. Prof. Paper 358. 1961. 106 p.
  30. Jeffries H. The Earth, its origin, history, and physical constitution. London: Cambridge Univ. Press, 1959.
  31. Kaminsky F.V. The Earth’s Lower Mantle. Composition and Structure. Springer, 2017. 331 p.
  32. Kusky T.M., Windley B.F., Zai M.-G. Tectonic evolution of the North China Block: from orogen to craton to orogen // Geological Society, London, Special Publications. 2007. V. 280. P. 1‒34.
  33. Labrosse S. Thermal and Compositional Stratification of the Inner Core / Abstract of AGU 2014 Fall Meeting, 15‒19 December. San Francisco, USA, 2014. DI31A-4257.
  34. Labrosse S., Poirier J.-P., Le Mouel J.-L. On the age of the inner core // Earth Planet. Sci. Lett. 2001. V. 190. P. 111‒123.
  35. Ma G.S.-K., Wang K.-L., Malpas J., Iizuka Y., Xenophontos C., Turkmani A.A., Chan G.H.-N., Usuki T., Chan Q.H.-S. Melt-pockets and spongy clinopyroxenes in mantle xenoliths from the Plio-Quaternary Al Ghab volcanic field, NW Syria: implications for the metasomatic evolution of the lithosphere / Eds A. Khan, F. Deschamps // The Earth’s heterogeneous mantle. Cham: Springer International Publishing, 2015. P. 205‒257.
  36. Maruyama S. Plume tectonics // J. Geol. Soc. Japan. 1994. V. 100. № 1. P. 24‒49.
  37. McDonough W.F. Compositional Model for the Earth’s Core // Treatise on Geochemistry. The Mantle and Core. V. 2. Elsevier, 2014. P. 559‒576.
  38. Mishra S.K., Srivastava A. K. The Evolution of Magnetic Rayleigh–Taylor Unstable Plumes and Hybrid KH-RT Instability into a Loop-like Eruptive Prominence // The Astrophysical J. 2019. V. 874. № 57.
  39. Nataf H.-C. Seismic imaging of mantle plumes // Annu. Rev. Earth Planet. Sci. 2000. V. 28. P. 391–417.
  40. Pearson D.G., Canil D., Shirey S.B. Mantle samples inclu-ded in volcanic rocks: xenoliths and diamonds / Ed. R.W. Carlson // Treatise on Geochemistry, The Mantle and Core. V. 3. Elsevier, 2014. P. 547‒568.
  41. Philpotts A.R., Ague J.J. Principles of igneous and metamorphic petrology / 2nd edition. Cambridge: Cambridge Univ. Press, 2009. 667 p.
  42. Potter E., Szatmari P. Global Miocene tectonics and the modern world // Earth-Science Reviews. 2009. V. 96. P. 279–295.
  43. Puchtel I.S., Brugmann G.E., Hofmann A.W. Precise Re-Os mineral isochron and Pb-Nd-Os isotope systematics of a mafic-ultramafic sill in the 2.0 Ga Onega plateau (Baltic Shield) // Earth Planet. Sci. Lett. 1999. V. 170. P. 447‒461.
  44. Rizo H., Andrault D., Bennett N.R., Humayun M., Brandon A., Vlastelic I., Moine B., Poirier A., Bouhifd M.A., Murphy D.T. 182W evidence for core-mantle interaction in the source of mantle plumes // Geochem. Persp. Lett. 2019. V. 11. P. 6‒11.
  45. Rubie D.C., Nimmo F., Melosh H.J. Formation of the Earth’s core. Treatise on Geophysics. Evolution of the Earth / Eds G. Schubert, D. Stevenson. Amsterdam et al.: Elsevier, 2009. P. 51‒90.
  46. Rudnick R.L., Gao S. Composition of the continental crust // Treasure on Geochemistry / Eds D. Holland, K.K. Turekian. Elsevier, 2003. V. 3. P. 1‒64.
  47. Ryabchikov I.D., Sharkov E.V., Kogarko L.N. Rhönite from mantle peridotites in Syria // Bull. Tethys Geol. Soc. Cairo. 2010. P. 9‒13.
  48. Scheinberg A., Elkins-Tanton L.T., Schubert G., Bercovici D. Core solidification and dynamo evolution in a mantle-stripped planetesimals // J. Geophys. Res. Planets. 2016. V. 121. P. 2‒20.
  49. Sharkov E.V. Origin and Development of Cores of the Terrestrial Planets: Evidence from Their Tectonomagmatic Evolution and Paleomagnetic Data // The Earth’s Core: Structure, Properties and Dynamics / Ed. J.M. Phillips. N.Y.: Nova Science Publishers Inc., 2012. P. 39‒62.
  50. Sharkov E., Bogina M., Chistyakov A. Magmatic systems of large continental igneous provinces // Geosci. Front. 2017. V. 8. № 4. P. 621‒640.
  51. Sharkov E., Bogina M. Composition of Mantle Thermochemical Plumes did not Change from the Mid Paleoproterozoic: Evidence from the LIPs’ Study // Goldschmidt Abstracts. 2019. 3065.
  52. Shibazaki Y., Ohtani E., Teresaki H., Suzuki A., Funakoshi K. Hydrogene partioning between iron and ringwoodite into the Martian core // Earth Planet. Sci. Lett. 2009. V. 287. P. 463‒470.
  53. Stille H. Grundfragen der vergleichenden Tektonik. Berlin: Gebrüder Borntraeger, 1924.
  54. Walker R.J., Morgan J.W., Hanski E.J., Smolkin V.F. Re-Os systematics of early Proterozoic ferropicrites, Pechenga complex, northwestern Russia: evidence for ancient 187Os‑enriched plume // Geochim. Cosmochim. Acta. 1997. V. 61. P. 3145‒3160.
  55. Wang T., Song X., Xia H.H. Equatorial anisotropy in the inner part of Earth’s inner core from autocorrelation of earthquake coda // Nature Geoscience. 2015. V. 8. P. 224–227.
  56. Xu W.W., Zheng T.Y., Zhao L. Mantle dynamics of the reactivating North China Craton: Constraints from the topographies of the 410-km and 660 km discontinuites // Science China. Earth Sciences. 2011. V. 54. № 6. P. 881‒887.
  57. Young Y.-N., Tufo H., Dubey A., Rosner R. J. On the miscible Rayleigh–Taylor instability: two and three dimensions // Fluid Mech. Cambridge: Cambridge University Press, 2001. V. 447. P. 377–408.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (1MB)
3.

下载 (476KB)
4.

下载 (200KB)
5.

下载 (237KB)
6.

下载 (1MB)
7.

下载 (1MB)

版权所有 © Е.В. Шарков, М.М. Богина, А.В. Чистяков, 2023

##common.cookie##