How to Choose a Magnitude Interval to Evaluate the Slope of the Magnitude-frequency Graph

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In modern seismological practice, to describe the distribution of magnitudes, the Gutenberg-Richter law is widely used, one of the parameters of which is the b-value (the slope of the magnitude-frequency graph on a log scale). Authors propose new approaches to the problem of adequate and efficient statistical estimation of this parameter. The problem of the correct choice of the magnitude interval is discussed, on which the straightness of the Gutenberg-Richter law is observed with an acceptable degree of accuracy and which should be used to estimate the b-value. An efficient method of accounting for discreteness and aggregation of magnitudes in earthquake catalogs (the maximum likelihood method for discrete distributions) is proposed. The problem of changes in time of the lower limit of representative earthquakes registration is considered and a statistical approach is proposed for their description.

作者简介

V. Pisarenko

The Institute of Earthquake Prediction Theory and Mathematical Geophysics RAS

编辑信件的主要联系方式.
Email: pisarenko@yasenevo.ru
Russia, 117997, Moscow, Profsoyuznya st., 84/32

A. Skorkina

The Institute of Earthquake Prediction Theory and Mathematical Geophysics RAS

编辑信件的主要联系方式.
Email: anna@mitp.ru
Russia, 117997, Moscow, Profsoyuznya st., 84/32

T. Rukavishnikova

The Institute of Earthquake Prediction Theory and Mathematical Geophysics RAS

编辑信件的主要联系方式.
Email: tanyar@mitp.ru
Russia, 117997, Moscow, Profsoyuznya st., 84/32

参考

  1. Писаренко В.Ф. Оценка параметров Усеченного распределения Гутенберга-Рихтера (УГР) // Физика Земли. 2022. № 1. С. 90–99.
  2. Писаренко В.Ф., Любушин А.А., Родкин М.В. Максимальные землетрясения в будущих интервалах времени // Физика Земли. 2021. № 2. С. 1‒19.
  3. Писаренко В.Ф., Родкин М.В. Декластеризация сейсмического потока, статистический анализ // Физика Земли. 2019. № 5. С. 1‒15.
  4. Писаренко В.Ф., Ружич В.В., Скоркина А.А., Левина Е.А. Структура сейсмического поля Байкальской рифтовой зоны // Физика Земли. 2022. № 3. С. 1‒19.
  5. Рао С.Р. Линейные статистические методы и их применения. Глава 6 (6e.2.2). М.: Наука, 1968. 548 с.
  6. Ризниченко Ю.В. Проблемы физики землетрясений // Физика Земли. 1966. № 2. С. 3–24.
  7. Смирнов В.Б., Завьялов А.Д. К вопросу о сейсмическом отклике на электромагнитное зондирование литосферы Земли // Физика Земли. 2012. № 7–8. С. 63–88.
  8. Смирнов В.Б., Пономарев А.В. Физика переходных режимов сейсмичности. М.: РАН, 2020. 412 с.
  9. Смирнов В.Б., Пономарев А.В., Завьялов А.Д. Структура акустического режима и сейсмический процесс // Физика Земли. 1995. № 1. С. 38–58.
  10. Соболев Г.А. Основы прогноза землетрясений. М.: Наука, 1993. 313 с.
  11. Aki K. Maximum likelihood estimate of b in the formula logN = a − bM and its confidence limits // Bull. Earthq. Res. Inst. 1965. V. 43. P. 237–239.
  12. Bender B. Maximum likelihood estimation of b-values for magnitude grouped data // BSSA. 1983. V. 73. P. 831‒851.
  13. Cosentino P., Ficara V., Luzio D. Truncated exponential frequency-magnitude relationship in the earthquake statistics // Bull. Seismol. Soc. Am. 1977. V. 67. P. 1615–1623.
  14. Cramer H. Mathematical Methods of Statistics. Princeton: Princeton University Press, 1946. 631 p.
  15. Gutenberg B., Richter C. Seismicity of the Earth / 2nd eds. Princeton: Princeton University Press, 1954. 321 p.
  16. Holschneider M., Zoller G., Hainzl S. Estimation of the ma-ximum possible magnitude in the framework of the doubly truncated Gutenberg-Richter model // Bull. Seismol. Soc. Am. 2011. V. 101(4). P. 1649–1659.
  17. Kagan Y.Y., Schoenberg F. Estimation of the upper cutoff parameter for the tapered Pareto distribution // J. Appl. Prob. 2001. V. 38(A). P. 158–175.
  18. Kijko A. Estimation of the maximum earthquake magnitude Mmax // Pure Appl. Geophys. 2004. V. 161(8). P. 1655–1681.
  19. Kijko A., Graham G. Parametric-historic procedure for probabilistic seismic hazard analysis part I: Estimation of maximum regional magnitude Mmax // Pure Appl. Geophys. 1998. V. 152(3). P. 413–442.
  20. Kijko A., Sellevoll M. Estimation of earthquake hazard parameters from incomplete data files. Part I. Utilization of extreme and complete catalogs with different threshold magnitudes // Bull. Seism. Soc. Amer. 1989. V. 79. P. 645‒654.
  21. Kijko A., Sellevoll M. Estimation of earthquake hazard parameters from incomplete data files. Part II. Incorporation of magnitude heterogeneity // Bull. Seism. Soc. Amer. 1992. V. 82. P. 120‒134.
  22. Kijko A., Singh M. Statistical tools for maximum possible earthquake estimation // Acta Geophys. 2011. V. 59(4). P. 674–700.
  23. Marzocchi W., Sandri L. A review and new insights on the estimation of the b-value and its uncertainty // Annales of Geophysics. 2003. V. 46. № 6. P. 1271‒1282.
  24. Pisarenko V., Rodkin M. Approaches to Solving the Maximum Possible Earthquake Magnitude (Mmax) Problem // Accepted for publication in the Journal Surveys in Geophysics. 2022. https://doi.org/10.1007/s10712-021-09673-1
  25. Pisarenko V., Rodkin M. The Estimation of Probability of Extreme Events for Small samples // Pure and Appl. Geophys. 2017. V. 174. № 4. P. 1547–1560.
  26. Scholz C.H. The frequency-magnitude relation of micro-fracturing in rock and its relation to earthquakes // Bull. Seism. Soc. Amer. 1968. V. 58. № 1. P. 399‒415.
  27. Taroni M., Zhuang J., Marzocchi W. High-Definition Mapping of the Gutenberg-Richter b-value and Its Relevance: A Case Study in Italy // Seismol. Res. Lett. 2021. V. 92. P. 3778–3784.
  28. Utsu T. A statistical significance test of the difference in b‑value between two earthquake groups // J. Phys. Earth. 1966. V. 14. № 2. P. 37–40.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (39KB)
3.

下载 (382KB)
4.

下载 (65KB)
5.

下载 (366KB)
6.

下载 (57KB)

版权所有 © В.Ф. Писаренко, А.А. Скоркина, Т.А. Рукавишникова, 2023

##common.cookie##