Magnitudes of seismic events induced by fluid injections in the Earth’s crust

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Based on a generalization of empirical data and theoretical dependencies, equations linking the upper limit of maximum earthquake magnitude and the volume of fluid injection during water injection, supercritical CO2, and magmatic activity preceding volcanic eruptions were obtained.

The equations can be used to predict trigger seismicity in shale gas and oil production, Enhanced Geothermal Systems (EGS) creation for geothermal energy use, supercritical CO2 burial, and to estimate the volume of magma injections preceding volcanic eruptions.

Texto integral

Acesso é fechado

Sobre autores

A. Kiryukhin

Institute of Volcanology and Seismology FEB RAS

Autor responsável pela correspondência
Email: AVKiryukhin2@mail.ru
Rússia, bulvar Piipa, 9, Petropavlovsk-Kamchatsky, 683006

Y. Fujii

Hokkaido University

Email: AVKiryukhin2@mail.ru

Faculty of Engineering

Japão, N13W8, Sapporo, 060-8628

B. A. Alam

Military Institute of Science and Technology

Email: AVKiryukhin2@mail.ru

Department of Petroleum & Mining, Faculty of Civil Engineering

Bamgladexe, Dhaka, 1216

E. Chernykh

Institute of Volcanology and Seismology FEB RAS

Email: AVKiryukhin2@mail.ru
Japão, bulvar Piipa, 9, Petropavlovsk-Kamchatsky, 683006

Bibliografia

  1. Belousov A., Belousova M., Edwards B. et al. Overview of the precursors and dynamics of the 2012–2013 basaltic fissure eruption of Tolbachik Volcano, Kamchatka, Russia // J. of Volcanol. and Geotherm. Res. 2015. № 307. P. 22–37.
  2. Block L., Wood C., Yeck W., King V. The 24 January 2013 ML 4.4 Earthquake near Paradox, Colorado and Its Relation to Deep Well Injection // Seism. Res. Lett. 2014. V. 85. № 3. P. 609‒624. doi: 10.1785/0220130188
  3. British Geological Survey web site, http://earthquakes.bgs.ac.uk/research/earthquake_hazard_shale_gas.html (browsed on October 20, 2015).
  4. Cappa F., Rutqvist J. Impact of CO2 Geological Sequestration on the Nucleation of Earthquakes // Geophys. Res. Lett. 2011. V. 38. DOI: 10/1029/2011GL048487
  5. Cappa F., Rutqvist J. Seismic Rupture and Ground Accelerations Induced by CO2 Injection in the Shallow Crust // Geophys. J. Int. 2012. V. 190. № 3. P. 1784‒1789.
  6. Convertito V., Maercklin L., Sharma N., Zollo A. From Induced Seismicity to Direct Time-Dependent Seismic Hazard // Bull. Seism. Soc. Am. 2012. V. 102. № 6. P. 2563‒2573. doi: 10.1785/0120120036
  7. Cladouhos T., Petty S., Foulger G., Julian B., Fehler M. Injection Induced Seismicity and Geothermal Energy // GRC Transactions. 2010. V. 34. P. 1213‒1220.
  8. Coppola D., Laiolo M., Massimetti F., Hainzl S., Shevchenko A.V., Mania R., Shapiro N., Walter T.R. Thermal remote sensing reveals communication between volcanoes of the Klyuchevskoy Volcanic Group // Scientific Reports. 2021. V. 11(1). P. 1‒16.
  9. Dieterich J.H., Richards-Dinger K.B., Kroll K.A. Modelling Injection-Induced Seismicity with the Physics-based Earthquake Simulator RSQSim // Seism. Res. Lett. 2015. V. 86. № 4. P. 1102‒1109. doi: 10.1785/0220150057
  10. Elsworth W. Are Seismicity Rate Changes in the Midcontinent Natural or Manmade? San Diego: Proc. SSA Meeting, 2012.
  11. Foulger G.R., Wilsona M.P., Gluyasa J.G., Juliana B.J., Daviesb R.J. Global review of human-induced earthquakes // Earth-Science Rev. 2018. V. 178. P. 438–514.
  12. Gan E., Frohlich C. Gas injection may have triggered earthquakes in the Cogdell oil field, Texas // PNAS. 2013. V. 110. № 47. P. 18786‒18791.
  13. Grigoli F., Cesca S., Rinaldi A.P., Manconi A., López-Comino J.A., Clinton J.F., Westaway R., Cauzzi C., Dahm T., Wiemer S. The November 2017 Mw 5.5 Pohang earthquake: A possible case of induced seismicity in South Korea // Science. 2018. V. 360. № 6392. P. 1003‒1006.
  14. Healy J.H., Rubey W.W., Griggs D.T., Raleigh C.B. The Denver Earthquakes // Science. New Series. 1968. V. 161. № 3848. P. 1301‒1310.
  15. Holland A. Earthquakes Triggered by Hydraulic Fracturing in South-Cebtral Oklahoma // Bull. Seism. Soc. Am. 2013. V. 103. № 3. P. 1784‒1792. doi: 10.1785/0120120109
  16. Horton S. Disposal of Hydrofracking Waste Fluid by Injection into Subsurface Aquifers Triggers Earthquake Swarm in Central Arkansas with Potential for Damaging Earthquake // Seism. Res. Lett. 2012. V. 83. № 2. P. 251‒260.
  17. Hubbert M.K., Rubey W.W. Role of Fluid Pressure in Mechanics of Overthrust Faulting // Bull. Geol. Soc. Am. 1959. V. 70. P. 115‒186.
  18. JOGMEC Web Site, http://www.jogmec.go.jp/library/recommend_library_10_000037.html (browsed on Oct. 15, 2015 in Japanese)
  19. Kaven J.O., Hickman S.H., McGarr A.F., Ellsworth W.L. Surface Monitoring of Microseismcity at the Decatur. Illinois, CO2 Sequestration Demonstration Site // Seism. Res. Lett. 2015. V. 86. № 4. P. 1096‒1101. doi: 10.1785/0220150062
  20. Keranen K.M., Savage H., Atekwana E., Cochran E., Sumy D., Rubinstein J., Kaven J. Foreshock and Aftershock Sequences of the 2011 M5.6 Oklahoma, Earthquake, 2012 // Proc. SSA Meeting. San Diego, 2012.
  21. Kiryukhin A.V., Polyakov A.Y., Voronin P.O., Zhuravlev N.B., Usacheva O.O., Solomatin A.V., Kiryukhin P.A. Magma Fracking and Production Reservoirs Beneath and Adjacent to Mutnovsky Volcano Based on Seismic Data and Hydrothermal Activity // Geothermics. 2022. V. 105. 102474.
  22. Kocharyan G.G. Nucleation and Evolution of Sliding in Continental Fault Zones under the Action of Natural and Man-Made Factors: A State-of-the-Art Review July 2021 // Izvestiya Physics of the Solid Earth. 2021. V. 57(4). P. 439‒473.
  23. Ladner F., Häring M.O. Hydraulic Characteristics of the Basel 1 Enhanced Geothermal System // Geothermal Resources Council Transactions. 2009. V. 33. P. 199‒203.
  24. Lamontagne M., Hammamji Y., Tournier J.P., Woodgold C. Reservoir-induced Earthquakes at Sainte-Marguerite-3, Quebec, Canada, Canadian // Journal of Earth Sciences. 2006. V. 43. № 2. P. 135‒146. doi: 10.1139/E05-108
  25. Li Z., Eaton D., Davidsen J. Short-term forecasting of Mmax during hydraulic fracturing // Scientific Reports. 2022. V. 12. 12509. https://doi.org/10.1038/s41598-022-15365-6
  26. Lleons A.L., Michael A.J. Statistical Modeling of Seismicity Rate Changes in Oklahoma, 2012 // Proc. SSA Meeting. San Diego, 2012.
  27. McGarr A. Moment Tensor of Ten Witwatersrand Mine Tremors // PAGEOPH. 1992. V. 139. № 3/4. P. 781‒800.
  28. McGarr A. Maximum Magnitude Earthquakes Induced by Fluid Injection // J. Geophys. Res.: Solid Earth. 2014. V. 119. P. 1008‒1019.
  29. MIT Energy Initiative, The Future of Natural Gas – An Interdisciplinary MIT Study, 2011, http://mitei.mit.edu/publications/reports-studies/future-natural-gas30
  30. Nicol A., Carne R., Gerstenberger M., Christophersen A. Induced seismicity and its implications for CO2 storage risk // Energy Procedia. 2011. V. 4. P. 3699‒3706.
  31. Nicolas C., Michel F., Catherine D., Marco C. Induced Microseismic Activity During Recent Circulation Tests at the EGS Site of Soultz-Sous-Forest (France), 2011, Proc. Thirty-Sixth Workshop on Geothermal Reservoir Engineering, Stanford, California, 31 January‒2 February 2011. Stanford: Stanford University, 2011. SGP-TR-191.
  32. Nishigami K., Tadokoro K., Nagai S., Mizuno T., Kanoh Y., Hiramatsu Y. Induced Seismicity by Injecting Water // Journal of Geology in Japanese. 2002. V. 111. N. 2. P. 268‒276.
  33. Nishimoto S., Kiyama T., Zhang Y., Kumakura S., Ishijima Y. Change in Mechanical Properties and Elastic Wave Velocity of Mudstone in Otashiro seam, Kazusa Group in Japan due to Supercritical CO2 Injection, 2007 in Japanese // Proc. Annual Spring Meeting of Hokkaido Branch, MMIJ, A-10. 2007. P. 19‒20.
  34. Pruess K. ECO2N: A TOUGH2 Fluid Property Module for Mixtures of Water, NaCl, and CO2 LBNL-57952. 2005. 66 p.
  35. Rastogi B.K., Mandal P., Kumar N. Seismicity around Dhamni Dam, Maharashtra, India // PAGEOPH. 1997. V. 150. N. 3‒4. P. 493‒509.
  36. Sato K., Fujii Y. Induced Seismicity Associated with Longwall Coal Mining // Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 1988. V. 25. N. 5. P. 253‒262.
  37. Shen B., King A., Guo H. Displacement, Stress, and Seismicity ion Roadways Roofs during Mining-induced Failure // Int. J. Rock Mech. Min. Sci. 2008. V. 45. P. 672‒688.
  38. Shirezaei M., Ellsworth W.L., Tiampo K.F., González P.J., Manga M. Surface Uplift and Time-dependent Seismic Hazard due to Fluid Injection in Eastern Texas // Science. 2016. V. 353. P. 1416‒1419.
  39. Sigmundsson F., Hooper A., Hreinsdoґttir S. et al. Segmented Lateral Dyke Growth in a Rifting Event at Bárðarbunga Volcanic System, Iceland // Nature. 2015. V. 517. P. 191‒194.
  40. Schultz R., Skoumal R.J., Brudzinski M.R., Eaton D., Baptie B., Ellsworth W. Hydraulic fracturing‐induced seismicity // Rev. of Geophys. 2020. 58. e2019RG000695.
  41. Statoil Web Site, http://www.secarbon.org/wp-content/uploads/2011/05/Hagen.pdf (browsed on Oct. 20, 2015)
  42. United States Geological Survey Web Site, Search Earthquake Archives, http://earthquake.usgs.gov/earthquakes/ search/ (browsed on Sept. 8, 2016)
  43. United States Geological Survey Web Site, http://earthquake.usgs.gov/earthquakes/eventpage/nc72282711# general_summary (browsed on Oct. 20, 2015)
  44. Zoback M.D. Earthquake Risk Associated with Shale Gas Development and Carbon Sequestration, 2013 // Proc. the 6th Int. Symp. In-Situ Rock Stress (RS2013 Sendai), 20‒22 August 2013. Sendai, Japan, 2013.
  45. Zoback M.D., Harjes H.-P. Injection Induced Earthquakes and Crustal Stress at 9 km depth at the KTB Deep Drilling Site, Germany // J. Geophys. Res. 1997. V. 102. № B8. P. 18477‒18491.
  46. Zoback M.D., Gorelick S.M. Earthquake triggering and large-scale geologic storage of carbon dioxide // PNAS. 2012. V. 109. № 26. P. 10164‒10168.
  47. Zoback M.D. Reservoir Geomechanics. Cambridge: University Press, 2010. 461 p.
  48. Zoller G., Holshneider M. Induced Seismicity: What is the Size of the Largest Expected Earthquake? // Bull. Seism. Soc. Ame. 2014. V. 104. № 6. P. 3153‒3158.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Theoretical dependences and experimental data linking the volume of injected fluid V (m3) and the maximum magnitude Mw(max) of the trigger seismic event. Legend: A-I – experimental data on water injection (see Table. 1); 7 – theoretical dependence for water, equation (7); J-K – experimental data on scCO2 injection (see Table. 1); 8 – theoretical dependence for scCO2, equation (8); N-R ‒ data on the volume of volcanic eruptions (see Table. 1); 9 ‒ theoretical dependence for magma, equation (9); Model – results of CFRAC modeling of magma injection into a shear crack at the base of the Mutnovsky volcano [Kiryukhin et al., 2022, variant #10, Table 3].

Baixar (314KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies