Ionospheric Perturbations after Stromboli Volcano Eruptions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Based on data from ground-based vertical sounding of the ionosphere, we analyze disturbances in the region of the maximum of the ionospheric F2-layer during the period of a strong eruption of the Stromboli volcano (Italy) in the form of two explosions in July and August 2019, as well as after the resumption of volcanic activity on October 9, 2022. As characteristics of the ionospheric response to these events, we research variations in the critical frequency of the F2-layer at the Giebilmann, Rome, and San Vito stations located near (no further than 450 km) the volcano. The measurement results indicate the influence on the ionosphere of atmospheric acoustic-gravity waves generated by volcanic activity and causing the appearance of long-lived disturbances in the ionosphere.

Full Text

Restricted Access

About the authors

S. A. Riabova

Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences; Sadovsky Institute of Geosphere Dynamics of Russian Academy of Sciences

Author for correspondence.
Email: riabovasa@mail.ru
Russian Federation, Bolshaya Gruzinskaya str., 10, bld. 1, Moscow, 123242; Leninsky prosp., 38, bld. 1, Moscow, 119334

S. L. Shalimov

Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences

Email: pmsk7@mail.ru
Russian Federation, Bolshaya Gruzinskaya str., 10, bld. 1, Moscow, 123242

References

  1. Амосов О.С., Муллер Н.В. Применение методов вейвлет и фрактального анализа для математического и численного моделирования временных рядов // Современные наукоемкие технологии. 2014. № 3. С. 122‒124.
  2. Астафьева Н.М. Вейвлет-анализ: основы теории и примеры применения // Успехи физических наук. 1996. Т. 166. № 11. С. 1145‒1170.
  3. Куницын В.Е., Шалимов С.Л. Ультранизкочастотные вариации магнитного поля при распространении в ионосфере акустико-гравитационных волн // Вестник МГУ. Сер. 3. Физика. Астрономия. 2011. № 5. С. 75‒78.
  4. Куницын В.Е., Нестеров И.А., Шалимов С.Л. Мегаземлетрясение в Японии 11 марта 2011 г.: регистрация ионосферных возмущений по данным GPS // Письма в ЖЭТФ. 2011. Т. 94. № 8. С. 657‒661.
  5. Обухов А.М. К вопросу о геострофическом ветре // Известия АН СССР. Серия географическая и геофизическая. 1949. Т. 13. № 4. С. 281‒306.
  6. Руководство URSI по интерпретации и обработке ионограмм / Под редакцией П.В. Медниковой. М.: Наука, 1977. 342 с.
  7. Спивак А.А., Рыбнов Ю.С., Рябова С.А. и др. Акустический, магнитный и электрические эффекты извержения вулкана Стромболи (Италия) в июле-августе 2019 г. // Физика Земли. 2020. № 5. С. 117‒130.
  8. Спивак А.А., Рябова С.А. Магнитный и электрические эффекты эксплозивной стадии извержения вулкана Стромболи (03.07.2019 г., Италия) // Доклады Российской Академии наук. Науки о Земле. 2020. T. 493. № 1. C. 54‒57.
  9. Шалимов С.Л. Атмосферные волны в плазме ионосферы. М.: ИФЗ РАН, 2018. 390 с.
  10. Adhikari B., Khatiwada R., Chapagain N.P. Analysis of geomagnetic storms using wavelet transforms // Journal of Nepal Physical Society. 2017. V. 4. № 1. P. 119−124.
  11. Andronico D., Del Bello E., D’Oriano C., Landi P., Pardini F., Scarlato P., de Michieli Vitturi M., Taddeucci J., Cristaldi A., Ciancitto F., Pennacchia F., Ricci T., Valentini F. Uncovering the eruptive patterns of the 2019 double paroxysm eruption crisis of Stromboli volcano // Nature Communications. 2021. V. 12. doi: 10.1038/s41467-021-24420-1
  12. Dautermann T., Calais E., Mattioli G.S. Global Positioning System detection and energy estimation of the ionospheric wave caused by the 13 July 2003 explosion of the Soufriere Hills Volcano, Montserrat // J. of Geophys. Res. Solid Earth. 2009. V. 114. № B02. doi: 10.1029/2008JB005722
  13. Fritts D.C., VanZandt T.E. Effects of doppler shifting on the frequency spectra of atmospheric gravity waves // J. of Geophys. Res. Atmospheres. 1987. V. 92. № D8. P. 9723‒9732.
  14. Giordano G., De Astis G. The summer 2019 basaltic Vulcanian eruptions (paroxysms) of Stromboli // Bull. of Volcanology. 2021. V. 83. doi: 10.1007/s00445-020-0143-2
  15. Grossmann A., Morlet J. Decomposition of Hardy functions into square integrable wavelets of constant shape // SIAM Journal on Mathematical Analysis. 1984. V. 15. № 4. P. 723–736.
  16. Mochalov V., Mochalova A. Extraction of ionosphere parameters in ionograms using deep learning // Solar-Terrestrial Relations and Physics of Earthquake Precursors. 2019. V. 127. https://doi.org/10.1051/e3sconf/201912701004
  17. Riabova S.A. Application of wavelet analysis to the analysis of geomagnetic field variations // J. of Physics Conference. 2018. V. 1141(1). doi: 10.1088/1742-6596/1141/1/012146
  18. Riabova S.A. Study of the multifractality of geomagnetic variations at the Belsk Observatory // Doklady Earth Sciences. 2022. V. 507. № 2. P. 299–303. doi: 10.1134/S1028334X22700489
  19. Scotto C. Electron density profile calculation technique for Autoscala ionogram analysis // Advances in Space Research. 2009. V. 44. P. 756–766.
  20. Scotto C., Pezzopane M., Zolesi B. Estimating the vertical electron density profile from an ionogram: On the passage from true to virtual heights via the target function method // Radio Science. 2012. V. 47. RS1007. https://doi.org/10.1029/2011RS004833
  21. Torrence C., Compo G. A practical guide to wavelet analysis // Bull. of the American Meteorological Society. 1998. V. 79. № 1. P. 61‒78.
  22. Wakai N., Ohyama H., Koizumi T. Manual of ionogram scaling / 3rd Eds. Japan: Radio Research Laboratory, Ministry of Posts and Telecommunications, 1987. 119 p.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Graph of Stromboli volcanic tremor (up-down notation) for 09.10.2022, adapted from data presented on the website [http://www.ct.ingv.it/] (a); variations of the geomagnetic field at the Gagliano station for 09.10.2022 (b); arrows indicate the beginning of high values ​​of volcanic tremor.

Download (325KB)
3. Fig. 2. Variations of the critical frequency of the F2 layer f0F2 for 03.07.2019 according to the San Vito station, the moment of explosion is indicated by a vertical arrow.

Download (194KB)
4. Fig. 3. Variations of the critical frequency of the F2 layer f0F2 for 08/28/2019 according to the San Vito station, the moment of explosion is indicated by a vertical arrow.

Download (195KB)
5. Fig. 4. Diurnal variation of the F2-layer critical frequency (f0F2) for 09.10.2022 at the Rome ionospheric monitoring station – solid lines; median monthly f0F2 values ​​for October of the same year – dashed curves (a); diurnal variation of the difference ∆f0F2 between the f0F2 values ​​for 09.10.2022 and the median values ​​for October 2022 (b); arrows indicate the onset of high values ​​of volcanic tremor.

Download (307KB)
6. Fig. 5. Diurnal variation of the F2-layer critical frequency (f0F2) for 09.10.2022 at the San Vito ionospheric monitoring station – solid lines; median monthly f0F2 values ​​for October of the same year – dashed curves (a); diurnal variation of the difference ∆f0F2 between the f0F2 values ​​for 09.10.2022 and the median values ​​for October 2022 (b); the arrows indicate the onset of high values ​​of volcanic tremor.

Download (318KB)
7. Fig. 6. Diurnal variation of the critical frequency of the F2 layer (f0F2) for 09.10.2022 at the Gibilmanna ionospheric monitoring station – solid lines; median monthly values ​​of f0F2 for October of the same year – dashed curves (a); diurnal variation of the difference ∆f0F2 between the f0F2 values ​​for 09.10.2022 and the median values ​​for October 2022 (b); the arrows indicate the onset of high values ​​of volcanic tremor.

Download (304KB)
8. Fig. 7. Scalogram of variations in the critical frequency of the F2 layer for 10/09/2022 at the Rome ionospheric monitoring station.

Download (340KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies