Space-time Singularities vs. Topologies in the Zeeman—Göbel Class


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We first observe that the Path topology of Hawking, King and MacCarthy is an analogue, in curved space-times, of a topology that was suggested by Zeeman as an alternative topology to his so-called Fine topology in Minkowski space-time. We then review a result of a recent paper on spaces of paths and the Path topology, and see that there are at least five more topologies in the class \(\mathfrak{Z}-\mathfrak{G}\) of Zeeman-Göbel topologies which admit a countable basis, incorporate the causal and conformal structures, but the Limit Curve Theorem (LCT) fails to hold. The “problem” that the LCT does not hold can be resolved by “adding back” the light cones in the basic-open sets of these topologies, and create new basic open sets for new topologies. But, the main question is: do we really need the LCT. to hold, and why? Why is the manifold topology, under which the group of homeomorphisms of a space-time is vast and of no physical significance (Zeeman), more preferable than an appropriate topology in the class \(\mathfrak{Z}-\mathfrak{G}\) under which a homeomorphism is an isometry (Göbel)? Since topological conditions that come as a result of a causality requirement are key in the existence of singularities in general relativity, the global topological conditions that one will supply the space-time manifold might play an important role in describing the transition from a quantum nonlocal theory to a classical local theory.

作者简介

Kyriakos Papadopoulos

Department of Mathematics

编辑信件的主要联系方式.
Email: kyriakos@sci.kuniv.edu.kw
科威特, Safat, 13060

B. Papadopoulos

Department of Civil Engineering

Email: kyriakos@sci.kuniv.edu.kw
希腊, Komotini

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2019