Twistor structures and boost-invariant solutions to field equations
- 作者: Kassandrov V.V.1, Rizcallah J.A.2, Markova N.V.3
-
隶属关系:
- Institute of Gravitation and Cosmology
- School of Education
- Department of Applied Mathematics
- 期: 卷 23, 编号 4 (2017)
- 页面: 300-304
- 栏目: Article
- URL: https://journals.rcsi.science/0202-2893/article/view/176097
- DOI: https://doi.org/10.1134/S0202289317040119
- ID: 176097
如何引用文章
详细
We start with a brief overview of a non-Lagrangian approach to field theory based on a generalization of the Kerr-Penrose theorem and algebraic twistor equations. Explicit algorithms for obtaining the set of fundamental (Maxwell, SL(2,ℂ)-Yang-Mills, spinor Weyl and curvature) fields associated with every solution of the basic system of algebraic equations are presented. The notion of a boost-invariant solution is introduced, and the unique axially-symmetric and boost-invariant solution which can be generated by twistor functions is obtained, together with the associated fields. It is found that this solution possesses a wide variety of point-, string- and membrane-like singularities exhibiting nontrivial dynamics and transmutations.
作者简介
Vladimir Kassandrov
Institute of Gravitation and Cosmology
编辑信件的主要联系方式.
Email: vkassan@sci.pfu.edu.ru
俄罗斯联邦, Moscow
Joseph Rizcallah
School of Education
Email: vkassan@sci.pfu.edu.ru
黎巴嫩, Beirut
Nina Markova
Department of Applied Mathematics
Email: vkassan@sci.pfu.edu.ru
俄罗斯联邦, Moscow
补充文件
