Model of Embedded Spaces: Gravitation and electricity


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Simultaneous non-configuration geometrization of classical electrodynamics and gravity leads to a 4D space which refer to the Model of Embedded Spaces (MES). MES presupposes the existence of their own space (manifold) in any massive particle (element of matter distribution) and argues that spacetime of the universe is the 4D metric result of dynamical embedding of proper manifolds, whose partial contribution is determined by matter interactions. The resulting space is equipped with Riemann-like geometry, whose differential formalism, in a test particle approximation, is obtained by a formal change of the gradient operator \(\partial /\partial {x^i} \to \partial /\partial {x^i} + 2{u^k}{\partial ^2}/\partial {x^{\left[ i \right.}}\partial {u^{\left. k \right]}}\), where ui = dxi/ds is the velocity of matter. In this paper the features of the geometry of dynamical embedding are analyzed, and MES analogs of the Einstein and Maxwell equations are obtained. It has been shown that the electric charge is a direct consequence of the gravitational constant and inertial mass of matter. We also discuss some fundamental physical and cosmological aspects of the developed ideas.

作者简介

V. Noskov

Institute of Continuous Media Mechanics, Ural Branch

编辑信件的主要联系方式.
Email: nskv@icmm.ru
俄罗斯联邦, ul. Koroleva 1, Perm, 614013

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016