Kinematic Censorship as a Constraint on Allowed Scenarios of High-Energy Particle Collisions


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

In the recent years, it was found that the energy Ec.m. in the center of mass frame of two colliding particles can be unbounded near black holes. If a collision occurs precisely on the horizon, Ec.m. is formally infinite. However, in any physically reasonable situation this is impossible. We collect different scenarios of this kind and show why in every act of collision Ec.m. is indeed finite (although it can be as large as one likes). The factors preventing an infinite energy are diverse: the necessity of infinite proper time, infinite tidal forces, potential barrier, etc. This prompts us to formulate a general principle according to which the limits in which Ec.m.→ 8 are never achieved. We call this the kinematic censorship (KC). Although by itself the validity of KC is quite natural, its application allows one to forbid scenarios of collisions predicting infinite Ec.m. without going into details. The KC is valid even in the test particle approximation, so an explanation of why Ec.m. cannot be infinite does not require references (common in the literature) to a nonlinear regime, back-reaction, etc. The KC remains valid not only for freely moving particles but also if particles are subject to a finite force. For an individual particle, we consider a light-like continuous limit of a timelike trajectory in which the effective mass turns to zero. We show that it cannot be accelerated to an infinite energy during a finite proper time under the action of such a force. As an example, we consider the dynamics of a scalar particle interacting with a background scalar field.

Об авторах

Yu. Pavlov

Institute of Problems in Mechanical Engineering; N.I. Lobachevsky Institute of Mathematics and Mechanics

Автор, ответственный за переписку.
Email: yuri.pavlov@mail.ru
Россия, St. Petersburg, 199178; Kazan, 420008

O. Zaslavskii

N.I. Lobachevsky Institute of Mathematics and Mechanics; Department of Physics and Technology

Автор, ответственный за переписку.
Email: zaslav@ukr.net
Россия, Kazan, 420008; Kharkov, 61022

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Ltd., 2019

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).