Relativistic algebra of space-time and algebrodynamics


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

We consider a manifestly Lorentz-invariant form L of the biquaternion algebra and its generalization to the case of a curved manifold. The conditions of L-differentiability of L-functions are formulated and considered as the primary equations for fundamental fields modeled with such functions. The exact form of the effective affine connection induced by L-differentiability equations is obtained for flat and curved manifolds. In the flat case, the integrability conditions of the connection lead to self-duality of the corresponding curvature, thus ensuring that the source-free Maxwell and SL(2,ℂ) Yang-Mills equations hold on the solutions of the L-differentiability equations.

Об авторах

V. Kassandrov

Institute of Gravitation and Cosmology

Автор, ответственный за переписку.
Email: vkassan@sci.pfu.edu.ru
Россия, Moscow

J. Rizcallah

School of Education

Email: vkassan@sci.pfu.edu.ru
Ливан, Beirut

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Ltd., 2016

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).