Quantum billiards in multidimensional models with fields of forms on a product of Einstein spaces


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

The gravitational D-dimensional model is considered, with l scalar fields, a cosmological constant and several forms. When a cosmological block-diagonal metric, defined on a product of an 1-dimensional interval and n oriented Einstein spaces, is chosen, an electromagnetic composite brane ansatz is adopted, and certain restrictions on the branes are imposed, the conformally covariant Wheeler–DeWitt (WDW) equation for the model is studied. Under certain restrictions, asymptotic solutions to the WDWequation are found in the limit of the formation of billiard walls which reduce the problem to the socalled quantum billiard on (n + l - 1)-dimensional hyperbolic space. Several examples of billiards in the model with {pmn} non-intersecting electric branes, e.g., corresponding to hyperbolic Kac–Moody algebras, are considered. In the classical case, any of these billiards describe a never-ending oscillating behavior of scale factors while approaching to the singularity, which is either spacelike or timelike. For n = 2 the model is completely integrable in the asymptotic regime in the clasical and quantum cases.

Об авторах

V. Ivashchuk

Center for Gravitation and Fundamental Metrology; Institute of Gravitation and Cosmology

Автор, ответственный за переписку.
Email: ivashchuk@mail.ru
Россия, ul. Ozernaya 46, Moscow, 119361; ul. Miklukho-Maklaya 6, Moscow, 117198

V. Melnikov

Center for Gravitation and Fundamental Metrology; Institute of Gravitation and Cosmology

Email: ivashchuk@mail.ru
Россия, ul. Ozernaya 46, Moscow, 119361; ul. Miklukho-Maklaya 6, Moscow, 117198

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Ltd., 2016

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).