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Аннотация. В работе представлен комплексный подход к оптимизации модели 

YOLOv8n для задач обнаружения объектов с использованием беспилотных летательных 

аппаратов в условиях ограниченных вычислительных ресурсов. Основное внимание уде-

лено методам квантования (INT8/INT4) и прунинга (50/75%), направленным на снижение 

вычислительной сложности модели при сохранении приемлемой точности. В результате 

оптимизации разработана модель YOLOv8n-Optimized-Drone, демонстрирующая 4-крат-

ный прирост скорости обработки на платформе Raspberry Pi 5 по сравнению с базовой 

версией. Размер модели сокращен в 3.8 раза, что критически важно для встраиваемых си-

стем БПЛА.  

Для обучения и валидации модели создан специализированный датасет с разметкой 

bounding box, учитывающий условия съемки с БПЛА. Натурные испытания подтвердили 

эффективность предложенного метода, обеспечивающего баланс между производитель-

ностью, энергопотреблением и точностью. Дополнительно исследовано влияние различ-

ных уровней квантизации и прунинга на итоговые метрики, что позволило определить 

оптимальную конфигурацию для развертывания на маломощных устройствах. Получен-

ные результаты открывают перспективы для дальнейшей адаптации модели к динамиче-

ским условиям полета и интеграции с мультисенсорными системами БПЛА. 
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Введение 

Беспилотные летательные аппараты (БПЛА) все чаще используются в решении широкого спек-

тра задач, включая наблюдение, доставку, поиск и спасение, а также мониторинг окружающей среды. 

Ключевым элементом эффективной работы БПЛА является возможность автономного захвата и сопро-

вождения объектов в режиме реального времени. Для реализации этой функциональности необходимы 

высокопроизводительные и энергоэффективные системы компьютерного зрения. 

Одним из наиболее перспективных подходов к решению данной задачи является использование 

алгоритмов глубокого обучения, в частности, моделей класса YOLO (You Only Look Once). YOLOv8, как 

одна из последних итераций этой архитектуры, демонстрирует высокие результаты в задачах обнару-

жения объектов, обеспечивая высокую точность и скорость обработки изображений. Однако, интегра-

ция YOLOv8 на борту БПЛА представляет собой сложную задачу из-за ограничений по вычислитель-

ным ресурсам и энергопотреблению. 

БПЛА, оснащенные микрокомпьютерами и маломощными камерами типа MIPI, обладают огра-

ниченной вычислительной мощностью и объемом памяти. В таких условиях прямое применение стан-

дартных версий YOLOv8 может привести к неприемлемо низкой частоте кадров, недостаточной для 

обеспечения надежного захвата и сопровождения объекта в динамичных условиях полета. 

Таким образом, возникает необходимость в оптимизации архитектуры YOLOv8 для эффектив-

ной работы на борту БПЛА с ограниченными ресурсами.  

Анализ научных публикаций показывает, что современные исследования в области обнаруже-

ния объектов с помощью БПЛА активно сосредоточены на оптимизации алгоритмов YOLO [1–4] для 

обеспечения высокой производительности, снижения энергопотребления и адаптации к ограниченным 

вычислительным ресурсам встраиваемых платформ. Большое внимание уделяется следующим направ-

лениям: модификация архитектуры YOLO, включая создание облегченных версий и оптимизацию су-
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ществующих архитектур для снижения вычислительных затрат при сохранении точности; использова-

ние трансферного обучения с применением предобученных моделей YOLO для ускорения обучения и 

повышения обобщающей способности, особенно при работе с ограниченными наборами данных, ха-

рактерными для задач обнаружения объектов на БПЛА. Актуальным остается вопрос оптимизации для 

конкретных платформ, включая адаптацию алгоритмов YOLO к архитектуре процессоров, используе-

мых в БПЛА, и к специализированным аппаратным ускорителям. Важным направлением является по-

вышение устойчивости моделей к изменяющимся условиям освещения и погодным явлениям [5]. В 

ряде исследований [6–9] проводится сравнительный анализ различных алгоритмов обнаружения объ-

ектов (включая YOLO) на реальных БПЛА с оценкой скорости обработки, точности и энергопотребле-

ния, что подчеркивает практическую значимость данной тематики. В рассмотренных работах также 

все больше внимания уделяется вопросам оптимизации модели с учетом энергопотребления, что осо-

бенно актуально для БПЛА с ограниченным временем полета. Вместе с тем комплексная оптимизация, 

сочетающая квантование, прунинг и адаптацию к конкретным условиям эксплуатации БПЛА (включая 

учет динамического изменения вычислительной нагрузки и агрессивную аугментацию данных для по-

вышения устойчивости), оставалась недостаточно изученной. В представленной работе предложен 

подход, направленный на восполнение этого пробела, и продемонстрирована его эффективность в ре-

альных условиях эксплуатации БПЛА. 

Целью данной работы является исследование компромисса между точностью обнаружения, 

скоростью обработки и потреблением вычислительных ресурсов при адаптации YOLOv8 для задачи 

захвата объекта БПЛА. Результаты данного исследования позволят определить оптимальную архитек-

туру YOLOv8 для автономного захвата и сопровождения объектов с использованием БПЛА, обеспечи-

вая баланс между точностью, скоростью и энергоэффективностью. 
 

Основная часть 

В рамках данного исследования проведена оценка эффективности различных методов оптими-

зации архитектуры YOLOv8 для задач захвата объекта беспилотным летательным аппаратом. Исследо-

вание включало в себя несколько этапов: формирование специализированного датасета, обучение ба-

зовой модели нейронной сети, реализация методов оптимизации, оценка производительности оптими-

зированных моделей. 

Для обучения и последующей оценки производительности модели разработан специализиро-

ванный датасет. Он состоит из 160 изображений целевого объекта, полученных с камеры БПЛА в раз-

личных условиях освещения и с разных углов обзора. Важным ограничением является наличие в кадре 

только одного экземпляра целевого объекта, что соответствует сценарию захвата и сопровождения 

единственной цели [10, 11]. Датасет разделен на обучающую (80 %) и валидационную (20 %) выборки. 

Разметка изображений выполнена посредством ограничивающих прямоугольников (bounding boxes), 

определяющих положение и размеры целевого объекта в кадре. 

В качестве контрольной точки обучена базовая модель YOLOv8n с применением стандартных 

гиперпараметров, рекомендованных разработчиками: размер выходного изображения 640×640, раз-

мера батча 8, скорость обучения динамическая и установлена в приделах 0.00001-0.1. Процесс обуче-

ния осуществлялся на вычислительном кластере с использованием графических процессоров 

NVIDIA GeForce GTX 1650. Мониторинг обучения производился с использованием стандартных мет-

рик box_loss, cls_loss, dfl_loss, Precision, Recall, mAP50 и mAP50-95.  

box_loss – функция потерь, оценивающая точность предсказанных ограничивающих прямо-

угольников вокруг объектов.  

cls_loss – функция потерь, оценивающая точность классификации объектов на общем фоне. 

dfl_loss – функция потерь, используемая в YOLOv8 для улучшения предсказания bounding box. 

Данная функция фокусируется на обучении модели более точно предсказывать распределение вероят-

ностей положения границ объекта, особенно в сложных случаях (например, при перекрытии объектов 

или при плохом освещении). 

P (Precision с англ. точность) – функция, показывающая долю правильно обнаруженных объектов 

среди всех объектов, предсказанных моделью как целевые. Функция характеризует точность модели.  

R (Recall c англ. полнота) – функция, показывающая долю правильно обнаруженных объектов 

среди всех фактических целевых объектов в датасете.  

mAP50 (Mean Average Precision at IoU=0.5) – среднее значение точности для всех классов, вы-

численное при пороге равном 0.5.  
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mAP50-95 (Mean Average Precision at IoU from 0.5 to 0.95) – среднее значение AP, вычисленное 

для различных порогов IoU, от 0.5 до 0.95 с шагом 0.05.  

Анализ данных (рис. 1) показал, что после 60 эпох наблюдается стабилизация метрик, дальней-

шее увеличение числа эпох не приводит к существенному улучшению результатов обучения. 
 

 
 

Рис. 1. Процесс обучение нейронной сети YOLOv8n 
 

В результате обучения модели YOLOv8n на собственном наборе данных, была получена модель 

YOLOv8n-Drone.  

В рамках данного исследования, для адаптации YOLOv8n-Drone к условиям ограниченных вы-

числительных ресурсов БПЛА, были реализованы следующие методы оптимизации, нацеленные на 

снижение вычислительной сложности модели без существенной потери точности обнаружения: 

1 Квантизация. Квантизация заключается в преобразовании весов и активаций нейронной сети 

из формата с плавающей точкой (обычно FP32 или FP16) в формат с фиксированной точкой (например, 

INT8 или INT4). Это позволяет значительно уменьшить объем памяти, необходимый для хранения мо-

дели, и ускорить вычисления, поскольку целочисленные операции выполняются быстрее и энергоэф-

фективнее на большинстве аппаратных платформ, используемых во встраиваемых системах (микро-

компьютеры). 

В данном исследовании использовалась техника Quantization Aware Training (QAT), реализо-

ванная с помощью библиотеки PyTorch. QAT подразумевает обучение модели с учетом эффектов кван-

тизации. В процессе обучения в модель добавляются операции, имитирующие квантизацию и декван-

тизацию, что позволяет сети адаптироваться к ограниченному диапазону значений и минимизировать 

потери точности. 

При INT8 квантизации веса и активации квантовались до 8-битного целочисленного формата. 

Это обеспечивает хороший компромисс между уменьшением размера модели и сохранением точности. 

При INT4 квантизации веса и активации квантовались до 4-битного целочисленного формата. 

Это позволило добиться еще большего уменьшения размера модели и увеличения скорости вычисле-

ний, однако потребовало более тщательной настройки параметров обучения для компенсации потери 

точности. 

Таким образом, в данном исследовании квантизация YOLOv8n-Drone позволила преобразовать 

веса и активации модели в целочисленный формат (INT8 и INT4), значительно снизив размер модели и 

увеличив скорость обработки на микрокомпьютере. При этом, использование INT4 квантизации обеспе-

чило наибольший прирост FPS, но сопровождалось незначительным снижением точности обнаружения 

объектов. Полученные квантованные модели демонстрируют пригодность YOLOv8n-Drone для эффек-

тивного развертывания на встраиваемых платформах с ограниченными вычислительными ресурсами.  

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

1,1

0 10 20 30 40 50 60 70 80 90 100

П
ар

ам
ет

р
ы

 о
б
у
ч

ен
и

я

Номер эпохи

P

mAP50

R

mAP50-95



ISSN 0201-727X ВЕСТНИК РГУПС № 2 / 2025 

 

38 
 

2 Прунинг. Прунинг (англ. pruning – «обрезка») – метод сжатия нейронной сети, направленный 

на уменьшение её вычислительной сложности и объёма памяти за счёт удаления избыточных или ма-

лозначимых параметров (весов, нейронов или целых слоёв). В данной работе применялся 

weight pruning – поэтапное обнуление весов с наименьшими абсолютными значениями с последующей 

переподготовкой модели для сохранения точности. Этот подход позволяет сократить размер модели и 

ускорить её работу на встраиваемых устройствах без существенной потери качества предсказаний. 

В рамках исследования по оптимизации YOLOv8n-Drone для задач БПЛА, прунинг был приме-

нен как метод уменьшения вычислительной сложности модели путем удаления избыточных или мало-

значимых соединений. 

В проекте использован метод weight pruning, заключающийся в обнулении весов с наименьшей 

абсолютной величиной. Этот метод прост в реализации и достаточно эффективен для уменьшения раз-

мера модели. Для упрощения процесса прунинга и управления им применялась библиотека SparseML. 

SparseML предоставляет инструменты для применения различных техник прунинга, а также для оценки 

и переподготовки модели после прунинга. 

Прунинг не применялся однократно, а выполнялся итеративно. После каждой итерации обну-

ления весов, модель подвергалась переподготовке на обучающем датасете. Это позволяло восстано-

вить часть потерянной точности и компенсировать негативное влияние прунинга. 

Ключевым параметром прунинга является уровень разреженности, определяющий долю весов, 

которые будут обнулены. В исследовании были протестированы два уровня разреженности: 50 и 75 %. 

Обнулению подвергались 50 % весов с наименьшей абсолютной величиной. Это обеспечивало 

умеренное уменьшение размера модели и увеличение скорости, при относительно небольшом сниже-

нии точности. Также обнулению подвергались 75 % весов с наименьшей абсолютной величиной. Это 

приводило к более значительному уменьшению размера модели и увеличению скорости, но требовало 

более тщательной переподготовки для сохранения приемлемого уровня точности. 

После каждой итерации прунинга и переподготовки, производилась оценка производительно-

сти модели на валидационном датасете. Измерялись метрики Precision, Recall, mAP50, mAP50-95, а 

также FPS и энергопотребление на платформе Raspberry Pi 5. 

Реализация прунинга в данном исследовании позволила значительно уменьшить размер 

YOLOv8n и повысить скорость инференса на Raspberry Pi 5, за счет обнуления наименее значимых 

весов. Увеличение уровня разреженности приводило к большему уменьшению размера модели и уве-

личению скорости, но требовало более тщательной переподготовки для минимизации потерь точности. 

Таким образом, прунинг является эффективным методом оптимизации, требующим балансировки 

между уровнем разреженности и усилием, затраченным на переподготовку, для достижения оптималь-

ного компромисса между размером модели, скоростью и точностью в задачах захвата объектов БПЛА. 

В таблице представлены результаты экспериментов по оптимизации модели YOLOv8n-Drone 

для развертывания на встраиваемой платформе Raspberry Pi 5. Рассматривались различные методы оп-

тимизации, включая квантование (INT8 и INT4) и прунинг (50 и 75 %). Основными критериями оценки 

являлись размер модели, точность (Precision, Recall, mAP50, mAP50-95), скорость обработки (FPS и 

задержка) и энергопотребление. 

Наиболее значимые улучшения были достигнуты при использовании комбинации квантования 

INT8 и прунинга 50 % (YOLOv8n-Optimized-Drone). Размер модели был уменьшен до 1.56 MB, что в 

~3.8 раза меньше, чем у базовой модели (5.94 MB). При этом наблюдалось лишь незначительное сни-

жение точности: Precision уменьшился с 0.94 до 0.91, Recall – с 0.89 до 0.87, mAP50 – с 0.92 до 0.90, а 

mAP50-95 – с 0.82 до 0.80. Наиболее важным является то, что FPS увеличился с 6.6 до 26.4, а задержка 

снизилась с 152 до 38 мс. Энергопотребление также уменьшилось с 2.5 до 2.0 W. 

Квантование INT8 показало прирост FPS в 3 раза. Прунинг 50 % самостоятельно – в 1,5 раза, а 

совместно эти методы показали – в 4 раза, поэтому использование этих методов, а также в комбинации, 

как это демонстрируется в YOLOv8n-Optimized-Drone, дает выигрыш в FPS и задержке. Другие методы 

оптимизации, такие как квантование INT4 и прунинг 75 %, привели к еще большему уменьшению раз-

мера модели, но за счет более значительного снижения точности. 
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Таблица результатов экспериментов по оптимизации модели YOLOv8n-Drone  
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-Drone, 60 
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0.94 

(0.91–0.98) 

0.89 

(0.88–0.90) 

0.92 

(0.91–

0.93) 

0.82 

(0.81–

0.83) 

6.6 
152 

(146–156) 

2.5 

(2.4–2.6) 

YOLOv8n-

Optimized-

Drone 

(INT8 + 

Prune 50 

%) 

1.56 
0.91 

(0.89–0.93) 

0.87 

(0.85–0.89) 

0.90 

(0.88–

0.92) 

0.80 

(0.78–

0.82) 

26.4 

 

38 

(37–40) 

2.0 

(1.9–2.1) 

Квантиза-

ция 

(INT8) 

3.12 
0.92 

(0.90–0.94) 

0.88 

(0.86–0.90) 

0.91 

(0.89–

0.93) 

0.81 
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0.83) 

19.8 
76 

 (73–78) 
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(INT4) 

1.56 
0.89 

(0.87–0.91) 

0.85 

(0.83–0.87) 

0.88 

(0.86–

0.90) 

0.79 
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0.81) 

9.8 
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(99–105) 

1.8 

(1.7–1.9) 

Прунинг 

(50 %) 
3.74 

 

0.93 

(0.91–0.95) 
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(0.86–0.90) 

0.91 

(0.89–

0.93) 

0.81 

(0.79–

0.83) 

9.9 
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(96–108) 

2.3 

(2.2–2.4) 

Прунинг 

(75 %) 
1.56 

0.88 

(0.86–0.90) 

0.86 

(0.84–0.88) 

0.87 

(0.85–

0.89) 

0.78 

(0.76–

0.80) 

9.1 
110 

(106–114) 

1.9 

(1.8–2.0) 

 

Снижение точности при использовании YOLOv8n-Optimized-Drone (INT8 + Prune 50 %) явля-

ется незначительным (менее 3 %) и может быть приемлемым в зависимости от конкретного приложе-

ния. Для большинства задач обнаружения объектов, где важна скорость обработки в реальном времени, 

небольшое снижение точности вполне оправдано значительным увеличением FPS и уменьшением за-

держки (рис. 2). Например, в системах видеонаблюдения, где требуется быстрое обнаружение потен-

циальных угроз, или в системах управления дронами, где важна оперативная реакция, скорость обра-

ботки имеет приоритет над максимальной точностью. 
 

 
 

Рис. 2. Влияние оптимизации модели YOLOv8n-Optimized-Drone на производительность 
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и скоростью обработки, YOLOv8n-Optimized-Drone (INT8 + Prune 50 %) представляется оптимальным 

выбором для развертывания на Raspberry Pi 5 в задачах обнаружения объектов в реальном времени. 

Дальнейшее увеличение точности потребовало бы использования более тяжелых моделей, что привело 

бы к неприемлемому снижению производительности на встраиваемой платформе.  
 

Выводы 

Данная работа представила систематическое исследование методов оптимизации модели 

YOLOv8n для развертывания на встраиваемой платформе Raspberry Pi 5, ориентированное на обнару-

жение объектов с применением беспилотных летательных аппаратов. Результаты, полученные в ходе 

натурных испытаний с использованием БПЛА в реальных условиях, подтвердили эффективность пред-

ложенного подхода. Достигнут существенный прогресс в оптимизации модели, о чем свидетельствует 

модель YOLOv8n-Optimized-Drone (INT8 + Prune 50 %), которая обеспечивает значительное снижение 

размера модели и задержки при незначительной потере точности, что делает ее оптимальной для задач 

обнаружения в реальном времени в условиях ограниченных ресурсов БПЛА. Дальнейшее развитие 

предусматривает изучение адаптивных методов оптимизации, учитывающих динамические изменения 

вычислительной нагрузки и внешних условий в ходе полета БПЛА, а также исследование более агрес-

сивных методов аугментации данных для повышения устойчивости модели к вариативности условий 

съемки и улучшения обобщающей способности. Кроме того, планируется изучение возможности ин-

теграции модели с другими сенсорами БПЛА для повышения точности и надежности обнаружения. 
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A. V. Satsuk 
 

OPTIMIZATION OF YOLOv8 ARCHITECTURE FOR UAV OBJECT CAPTURE TASKS: 

ANALYSIS OF THE TRADE-OFF BETWEEN ACCURACY, 

SPEED AND COMPUTATIONAL RESOURCES 
 

Abstract. This paper presents a comprehensive approach to optimizing the YOLOv8n 

model for object detection tasks using unmanned aerial vehicles (UAVs) under constrained 

computational resources. The focus is on quantization (INT8/INT4) and pruning (50%/75%) 

techniques aimed at reducing the model's computational complexity while maintaining ac-

ceptable accuracy. As a result of optimization, the YOLOv8n-Optimized-Drone model was 

developed, demonstrating a 4-fold increase in processing speed on the Raspberry Pi 5 platform 

compared to the basic version. The model size was reduced by 3.8 times, which is critical for 

embedded UAV systems. 

A specialized dataset with bounding box markup was created for training and validating 

the model, taking into account the UAV shooting conditions. Field tests confirmed the effec-

tiveness of the proposed method, which provides a balance between performance, power con-

sumption, and accuracy. Additionally, the influence of different quantization and pruning lev-

els on final metrics was investigated, enabling the determination of the optimal configuration 

for deployment on low-power devices. The obtained results open prospects for further adap-

tation of the model to dynamic flight conditions and integration with multi-sensor UAV sys-

tems. 

Keywords: unmanned aerial vehicle, quantization, pruning, neural network model optimi-

zation, neural network, YOLO, YOLO metrics. 
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