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ГЕОТЕХНИЧЕСКАЯ МОДЕЛЬ СИСТЕМЫ «НАСЫПЬ – ОСНОВАНИЕ» 

В УСЛОВИЯХ ДЕГРАДАЦИИ МНОГОЛЕТНЕМЕРЗЛЫХ ГРУНТОВ В ЯНАО * 
 

Аннотация. Деградация многолетнемерзлых грунтов в Ямало-Ненецком автоном-

ном округе имеет негативный тренд на увеличение, что связано как с изменением кли-

мата, так и инженерно-хозяйственной деятельностью человека. В статье рассмотрен во-

прос возникновения просадок основания земляного полотна линейной транспортной 

инфраструктуры в Арктической зоне Российской Федерации с точки зрения установки 

взаимосвязи криогенных деформаций и характеристик грунтов. Разработана геотехни-

ческая модель системы «насыпь – основание» в условиях деградации многолетнемерз-

лых грунтов в ЯНАО, позволяющая проектировать мероприятия по повышению эксплу-

атационной надежности, на основе терм стабилизации грунтов или противодеформаци-

онных сооружений. Для подтверждения возможности расчетов по разработанной гео-

технической модели выполнена ее верификация путем сравнения качественной и коли-

чественной картины деформирования с результатами инженерно-геокриологического 

мониторинга эксплуатируемого участка автомобильной дороги Надым – Салехард. 
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Введение 

Практически вся территория Арктической зоны характеризуется сплошным или островным 

распространением многолетнемерзлых пород. За период с 1971 по 2020 г. наблюдается существенный 

рост температурного режима в регионе: среднегодовая температура повысилась на 3,5 °C, что состав-

ляет около 0,7 °C каждые десять лет. Такие изменения отражаются на состоянии окружающей среды и 

грунтовых условий. Например, сравнение годовых отклонений температуры от нормы за период с 1961 

по 1990 г. и с 2008 по 2021 г. показывает увеличение разницы с 1,3 до 2,9 °C [1]. При этом глубина 

сезонного протаивания грунтов деятельного слоя выросла с 97 до 107 см, что свидетельствует о значи-

тельном влиянии потепления на кровлю многолетнемерзлых пород. 

Потепление в Арктике происходит в два раза быстрее, чем в целом по планете, и приводит к 

уменьшению ледового покрова, деградации мерзлоты, изменению условий циркуляции атмосферы, 

увеличению осадков и погодным аномалиям [2]. Так, в связи с глобальным изменением климата и от-

части техногенным воздействием человека сложился негативный тренд на прогрессирование деформа-

ций сооружений на многолетнемерзлых грунтах (ММГ) ввиду их деградации.  

По оценкам международных исследований к концу XXI века деградация ММГ продолжит уско-

ряться, приповерхностный слой мерзлоты может потерять до 90 % своей площади из-за дальнейшего 

роста температур [3]. 

Одним из наиболее неблагоприятных последствий изменения климата в Арктической зоне яв-

ляются просадки основания земляного полотна транспортных сооружений, связанные с проявлениями 

инженерно-геокриологических процессов [4, 5]. Методы управления такими деформациями до сих пор 

нельзя признать совершенными. Поэтому решение обозначенной выше проблемы имеет существенную 

научную значимость, заключающуюся в получении новых подходов, технологий, способов и кон-

                                                           
* Исследование выполнено за счет гранта Российского научного фонда № 24-19-20036, 

(https://rscf.ru/project/24-19-20036/) и финансовой поддержки Правительства Ямало-Ненецкого автономного 

округа. 
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трольно-диагностических методов для управления криогенными деформациями. Это должно позво-

лить не только решить проблему адаптации объектов линейной транспортной инфраструктуры к изме-

нениям климата и характеристик многолетнемерзлых пород в Арктической зоне Российской Федера-

ции [6], но и получить методологическую основу, новые научные знания для решения других научных 

проблем. 

Для установки связей и зависимостей между криогенными процессами и изменением физико-

механических характеристик системы «насыпь – основание» в условиях ЯНАО необходимо разрабо-

тать и верифицировать соответствующую геотехническую модель, что и является целью настоящей 

работы. 
 

Теоретические основы, предпосылки, допущения  

Авторами настоящей работы ранее выявлены особенности геокриологического состояния экс-

плуатируемого земляного полотна автомобильной дороги Надым – Салехард, в том числе протекаю-

щие в системе «насыпь – основание» криогенных процессов и сопутствующих им деформаций [7]. Вы-

явлены последствия негативных криогенных процессов (деградации ММГ): продольная осевая тре-

щина покрытия, просадки обочины, продольные трещины по кромке проезжей части и на откосах рас-

крытием до 10 см, а также термокарстовые просадки в полосе отвода у подошвы земляного полотна, 

которые можно считать характерными для системы «насыпь – основание» в условиях деградации ММГ 

в ЯНАО [7]. На рис. 1 представлен геокриологический профиль характерного участка земляного по-

лотна в соответствии с результатами исследований, приведенных в статье [7]. 
 

 
 

Рис. 1. Поперечный геокриологический профиль характерного участка  

земляного полотна [7] 
 

Ранее выполненные авторами исследования позволили сформулировать следующие особенно-

сти геокриологического состояния характерного для условий ЯНАО участка эксплуатируемой насыпи: 

«…– грунты основания и тела земляного полотна под проезжей частью находятся в многолет-

немерзлом состоянии; 

– максимальная величина деградации ММГ произошла под откосными частями земляного по-

лотна и в полосе отвода на достаточно большую ширину, что связано с нарушением естественных 

условий теплообмена за счет аккумуляции снега в холодный период года;  

– после деградации ММГ формируются слабые водонасыщенные грунты, зоны термических 

просадок заполняются поверхностными водами; 

– деформирование конструктивных элементов автомобильной дороги, в зависимости от зоны, 

происходит как за счет термических просадок (основание откосов и полоса отвода), так и за счет ак-

тивных сдвиговых смещений грунтов деятельного слоя в откосных частях земляного полотна» [7]. 

Таким образом, для оценки влияния криогенных деформаций на эксплуатационные показатели 

линейных транспортных сооружений в условиях ЯНАО необходимо учитывать особенности физико-

механических характеристик грунтов земляного полотна и основания, в том числе их состояние (талое, 

мерзлое и оттаивающее). 

Известным фактом является различие в процессе осадки мерзлых грунтов при оттаивании и 

талых грунтов. Мерзлые грунты при оттаивании имеют запаздывание во времени деформаций, что свя-

зано с проявлением упруговязких и вязкопластичных свойств [8]. Для деформирования таких грунтов 

характерна стадия пластики во всей области изменения напряжений. Помимо этого, необходимо учи-

тывать значительную сжимаемость и зависимость проницаемости от уплотнения. 

Ю.К. Зарецким [8] введено понятие о трех зонах, образующихся, когда мерзлый грунт подвер-

гается воздействию внешних сил и источника тепла. Так, в первой зоне температура грунта выше тем-

пературы фазовых переходов, во второй – грунт находится в пластичномерзлом состоянии, в третьей 
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– грунт находится в мерзлом состоянии. Такой подход учитывает работу грунтов основания сооруже-

ний с точки зрения их состояния, однако, для транспортных сооружений большое влияние оказывают 

геометрические параметры модели, что усложняет решение задачи описанным аналитическим методом. 

Похожий подход к описанию оттаивания грунтов был представлен в статье [9]. Авторами была 

разработана одномерная модель для расчета осадки оттаивающих сезонно-мерзлых грунтов земляного по-

лотна, которая представлена многослойной средой, состоящей из оттаявшего слоя (переменной мощности), 

слоя сезонно-мерзлого грунта и слоя грунта не попадающего в границы деятельного слоя.  

Решение задачи деформирования железнодорожного земляного полотна на основе подхода, 

предложенного Ю. К. Зарецким, было описано в работах [10, 11] с применением метода конечных эле-

ментов (МКЭ). Была предложена трехслойная модель оттаивающего основания, состоящая из оттаяв-

шего грунта, прослоя оттаивающего грунта и нижнего слоя мерзлого грунта. Границы между слоями 

переменны [11]. Так, применение МКЭ позволило учитывать геометрические параметры земляного 

полотна и сложное инженерно-геологическое строение с заданными характеристиками грунтовых эле-

ментов.  

Необходимо отметить, что описанные выше подходы к решению сложившейся проблемы не в 

полной мере учитывают особенности геокриологического состояния эксплуатируемого земляного по-

лотна характерного для условий ЯНАО, перечисленные ранее. В том числе необходимо учитывать, что 

грунтовая среда является многослойной, где каждый слой имеет свои физико-механические характе-

ристики и поведение. Для выполнения качественных расчетов и получения адекватных результатов 

необходимо прежде всего верно выбрать модели поведения грунтов. 

Так, в поперечном профиле на рассматриваемом участке автомобильной дороги Надым – Са-

лехард можно выделить следующие слои:  

– дорожная одежда, рекомендуемая модель поведения – линейно-упругая; 

– земляное полотно автомобильной дороги (состояние талое, консолидация завершилась), ре-

комендуемая модель – упрочняющегося грунта. Такая модель дает хорошее соответствие опытным 

данным на всем диапазоне деформаций, поскольку эта модель, в отличие от модели Мора – Кулона, 

позволяет учесть пластическое деформирование грунта на стадии его допредельного состояния и 

учесть нелинейное поведение грунта. Эта модель включает: в качестве поверхности разрушения – фор-

мулировку Мора – Кулона; для описания упругой области напряженно-деформированного состояния 

– гиперболическую формулировку DuncanChang [12] с изменяемыми модулями упругости для траек-

тории первичного нагружения и траектории разгружения – повторного нагружения; для описания пла-

стических сдвиговых и объемных деформаций – две функции текучести для девиаторного и изотроп-

ного нагружений; 

– сезоннооттаивающий грунт, представленный сильноразложившимся водонасыщенным тор-

фом и глинистыми грунтами текучей консистенции (состояние талое, консолидация не завершилась), 

рекомендуемая модель – ползучести слабого грунта, построенная в рамках теории вязкопластичности 

грунта [13]. Такая модель используется для описания, зависящего от времени поведения слабых грун-

тов, таких как нормально уплотненные глины и торф. Модель учитывает логарифмическое первичное 

и вторичное уплотнение. Ползучесть создается до тех пор, пока имеется эффективное напряжение. В 

реальности эффективное напряжение приблизительно равно напряжению от собственного веса грунта, 

это говорит о том, что деформации будут происходить без дополнительного пригруза; 

– таликовая область в массиве ММГ представлена сезоннооттаивающими грунтами, которые 

переместились в массив ММГ ввиду его деградации под откосными частями (состояние талое, консо-

лидация не завершилась), рекомендуемая модель – ползучести слабого грунта;  

– ММГ, рекомендуемая модель поведения – Кулона – Мора. Такая модель может быть исполь-

зована, т. к. данный слой имеет высокие значения прочностных и деформационных характеристик и 

практически не деформируется.  

Таким образом, анализ современных подходов к выбору моделей поведения грунтов для вы-

полнения расчетов методом конечных элементов позволил обосновать модели поведения грунтов для 

геотехнической модели системы «насыпь – основание» в условиях деградации ММГ в ЯНАО. 
 

Результаты исследования 

В настоящей статье для учета особенностей геокриологического состояния характерного для 

условий ЯНАО участка эксплуатируемой насыпи разработана геотехническая модель поперечного 
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профиля насыпи в условиях деградации ММГ в ЯНАО (рис. 2). Такая модель учитывает как существу-

ющие исследования [8–11], так и модели поведения соответствующих грунтовых слоев, представлен-

ные выше. 
 

 
 

Рис. 2. Геотехническая модель поперечного профиля насыпи  

в условиях деградации ММГ в ЯНАО 
 

На рис. 2 представлены два полупоперечных профиля: левый – проектный, правый – эксплуа-

тируемый, имеющий характерную деформацию. Учитывая анализ слоев поперечного профиля, выпол-

ненный выше, и рекомендуемые модели поведения грунтов в условиях исследования, элементы модели 

можно свести в табл. 1. 
 

Таблица 1 

 

Элементы разработанной модели 
 

Вводные параметры Ед. изм. Примечание 
Геометрические параметры модели 

Ширина земляного полотна м 
Принимается по проекту (при новом строи-
тельстве) или по результатам обследования 

Высота насыпи м 
Заложение откосов - 
Глубина и ширина термической просадки (элемент 5) м 

Принимается по результатам обследования 
Высота снегового покрова (элемент 8) м 

1 – дорожная одежда автомобильной дороги (модель линейно-упругая) 
Удельный вес кН/м3 

Принимаются по результатам обследования Коэффициент Пуассона - 
Модуль упругости кН/м2 
2 – проектное очертание тела земляного полотна / 7 – Существующее очертание тело земляного полотна после 

возникновения деградации ММГ (модель упрочняющегося грунта) 
Удельный вес кН/м3 

Принимается по результатам инженерно-
геологических изысканий 

Коэффициент Пуассона - 
Секущий модуль жесткости при стандартном кН/м2 
Касательный модуль жесткости при первичном 
нагружении 

кН/м2 

Жесткость при разгрузке / повторном нагружении кН/м2 
Удельное сцепление кН/м2 
Угол внутреннего трения градус 
Угол дилатансии градус 

2* – грунт тела земляного полотна, перешедший в многолетнемерзлое состояние при эксплуатации / 3* – се-
зонно-оттаивающий грунт, перешедший в многолетнемерзлое состояние при эксплуатации / 4 – многолетне-

мерзлый грунт основания (модель Кулона – Мора) 
Удельный вес кН/м3 

Принимается по результатам инженерно-
геологических изысканий 

Коэффициент Пуассона - 
Модуль упругости кН/м2 
Угол внутреннего трения градус 
Угол дилатансии градус 

3 – сезоннооттаивающий грунт / 6 – таликовая область в массиве ММГ  
(модель ползучести слабого грунта) 

Удельный вес кН/м3 

Принимается по результатам инженерно-
геологических изысканий 

Коэффициент пористости  
Удельное сцепление кН/м2 
Угол внутреннего трения градус 
Модифицированный коэффициент сжимаемости - 
Модифицированный коэффициент разбухания - 
Модифицированный коэффициент ползучести - 
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Необходимо отметить, что термическая просадка (элемент 5) образовалась ввиду деградации 
ММГ, связанной с нарушением естественных условий теплообмена за счет аккумуляции снега (эле-
мент 8) в холодный период года, а также в связи с наличием неудовлетворительного отвода поверх-
ностных вод от земляного полотна и их скоплении вдоль подошвы в летний период. Границами терми-
ческой просадки являются зона перехода высоты снегового покрова (элемент 8) к нормальным значе-
ниям для данной местности. Максимальная величина деградации ММГ располагается в зоне термиче-
ских просадок под откосными частями.  

Разработанная модель (см. рис. 2) предполагает возможность ее применения как при новом 
строительстве, так и для расчетов эксплуатируемой насыпи, имеющей очертание дневной поверхности 
отличное от проектного, а также понижение кровли ММГ. 

Для получения наиболее достоверных результатов расчета методом конечных элементов с уче-
том ранее выполненного анализа сформулированы следующие положения при составлении геотехни-
ческой модели, разработанной авторами: 

1 Геотехническая модель поперечного профиля насыпи в условиях деградации ММГ в ЯНАО 
формируется многослойной с учетом выше приведенных рекомендаций по выбору моделей поведения 
грунтов. Расположение и характеристики слоев принимаются по результатам комплексных инженер-
ных изысканий, в том числе геодезических, геологических, геокриологических и др.  

2 Для учета криогенных деформаций кровля ММГ располагается на глубине возможной дегра-
дации, определенной по теплотехническому расчету или по натурным измерениям в результате инже-
нерно-геокриологического мониторинга. 

3 Границами таликовой области (элемент 5) являются зоны перехода высоты снегового покрова 
(элемент 8) к нормальным значениям для данной местности. 

4 Вес снегового покрова при расчете методом конечных элементов не учитывается, т. к. расчет 
выполняется при талом состоянии грунтов деятельного слоя (элемент 3). 

5 Оценка деформированного состояния геотехнической модели поперечного профиля насыпи 
в условиях деградации ММГ в ЯНАО выполняется с использованием численного моделирования до 
наступления консолидации грунтов, при этом точность прогнозных расчетов обеспечивается при ве-
рификации модели с результатами геокриологического мониторинга. 

6 При проектировании термостабилизации грунтов основания или противодеформацинных ме-
роприятий, повышающих эксплуатационную надежность, в расчетную модель добавляется нагрузка от 
транспорта. 

Для подтверждения возможности расчетов по разработанной геотехнической модели выпол-
нена ее верификация. Учитывая, что в соответствии с моделью предполагается возможность расчетов 
как до строительства насыпи, так и в процессе эксплуатации верификация выполнена с использованием 
проектной документации и результатов инженерно-геокриологического мониторинга эксплуатируе-
мого участка автомобильной дороги Надым – Салехард [7]. 

Участок автомобильной дороги имеет две полосы движения. Земляное полотно представлено 
насыпью. Дорожная одежда капитального типа с асфальтобетонным покрытием состоит из четырех 
основных слоев мощностью до 60 см. Инженерно-геологическое строение определено по результатам 
бурения технических скважин с отбором образцов ненарушенной структуры, дальнейшим их лабора-
торным испытанием и объединением в инженерно-геологические элементы (рис. 3).  
 

 
 

Рис. 3. Цифровая модель полупоперечного профиля на участке автомобильной дороги  

Надым – Салехард в интерфейсе программного комплекса 
 

Критерием верификации модели будет являться получение качественной и количественной 
картины деформирования при моделировании проектного очертания насыпи, соответствующей ре-
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зультатам инженерно-геокриологического мониторинга, выполненного на данном участке. Допускае-
мой величиной отклонения результатов считается отличие в 30 %, как для прочностных и деформаци-
онных характеристик грунтов в соответствии с [13]. 

В программном комплексе, основанном на методе конечных элементов, была сформирована циф-
ровая модель полупоперечного профиля на участке автомобильной дороги Надым – Салехард (рис. 3). 
В расчетах используется полупоперечник правый, как имеющий наибольшую термическую просадку. 

При верификации была выполнена серия расчетов с целью подтверждения возможности оценки 
деформаций при различной величине оттаявшей толщи, определенной по результатам натурных 
наблюдений. Выполненные расчеты геотехнической модели поперечного профиля насыпи в условиях 
деградации ММГ в ЯНАО на участке автомобильной дороги Надым – Салехард объединены в следу-
ющие стадии: 

– нулевая стадия – наибольшее промерзание сезоннооттаивающих грунтов, грунты естествен-
ного основания находятся в мерзлом состоянии, насыпь отсутствует; 

– I стадия – насыпь отсыпана до проектного очертания в зимний период, кровля ММГ подня-
лась в насыпь (ИГЭ-2t*), сезоннооттаивающие грунты находятся в талом состоянии (ИГЭ-7а); 

– II стадия – деградация ММГ в основании, грунты ИГЭ-7а* переходят в талое состояние ИГЭ-
7а, образуется термическая просадка; 

– III стадия – продолжение деградации ММГ в основании, грунты ИГЭ-1гг* переходят в талое 
состояние, грунты ИГЭ-7а занимают место ИГЭ-1гг*. Стадия соответствует существующим инже-
нерно-геологическим условиям на момент обследования [7]. По результатам лабораторных исследова-
ний грунтов были получены физико-механические характеристики выделенных инженерно-геологи-
ческих элементов (рис. 3) необходимые для задания моделей поведения грунтов, описанных ранее 
(табл. 1), которые представлены в табл. 2. 

 

Таблица 2 
 

Физико-механические характеристики выделенных  
инженерно-геологических элементов 
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Удельный вес кН/м3 17,17 12,07 10,99 17,95 18,93 
Коэффициент пористости д.е. 0,619 2,440 - - - 

Модуль упругости МПа - - 
Не деформируется.  

> 300 МПа 
Секущий модуль жесткости 
при стандартном 

кН/м2 9100 - - - - 

Касательный модуль жесткости 
при первичном нагружении 

кН/м2 27600 - - - - 

Жесткость при разгрузке /  
повторном нагружении 

кН/м2 70300 - - - - 

Удельное сцепление кН/м2 3 30 - - - 
Угол внутреннего трения градус 29,7 10 - - - 
Модифицированный  
коэффициент сжимаемости 

- - 0,1646 - - - 

Модифицированный  
коэффициент разбухания 

- - 0,0532 - - - 

Модифицированный  
коэффициент ползучести 

- - 0,0504 - - - 
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Выполненный расчет методом конечных элементов позволил получить деформированный вид 

цифровой модели полупоперечного профиля. На рис. 4 представлена схема деформирования, объеди-

няющая все стадии расчета. Сплошной заливкой обозначены грунты основания и тела насыпи, которые 

в процессе деформации остаются неподвижными и не подвергаются значительным перемещениям. 

Градиентной заливкой выделены грунты, испытывающие деформации, при которых происходит их 

вдавливание, что отражает сложное взаимодействие между различными слоями. Штриховкой пока-

заны грунты, подверженные перемещениям, а штриховкой с заливкой – те, которые замещают друг 

друга или переходят из одного состояния в другое. Характерным примером является ИГЭ-7а*, который 

по мере деградации ММГ переходит в ИГЭ-7а, что наглядно демонстрирует переход грунта из твердо-

мерзлого состояния в талое, что сопровождается значительными перемещениями и изменением его 

характеристик. Такая визуализация позволяет четко проследить последовательность деформационных 

процессов, происходящих в насыпи и основании, и оценить их влияние на сооружение в целом. 

На первой стадии расчета, при переходе грунтов деятельного слоя (ИГЭ-7а*) в талое состояние 

(ИГЭ-7а), происходит перемещение дневной поверхности на 0,16 м вблизи подошвы откоса насыпи. 

Тонкой цветной штриховой линией обозначены очертания тела насыпи после реализации деформаций. 

В результате грунт насыпи (ИГЭ-2t) вытесняет торф (ИГЭ-7а), частично занимая его место. 

На второй стадии расчета происходит деградация ММГ, ИГЭ-7а* переходит в талое состояние. 

Этот фазовый переход сопровождается новыми деформациями, влекущими за собой образование тер-

мической просадки глубиной до 0,34 м. Перемещения на этой стадии показаны цветной штриховой 

линией. Грунт насыпи продолжает перемещаться, вдавливая и замещая грунт ИГЭ-7а.  

На третьей стадии продолжается деградация ММГ, зона термической просадки достигает 

0,52 м, ее границы обозначены сплошной утолщенной цветной линией. На этом этапе продолжается 

оттаивание грунтов, и в нижней части разреза торф ИГЭ-7а вдавливается в мерзлый грунт ИГЭ-1гг*. 

Очертания насыпи практически не изменяются, а торф ИГЭ-7а под телом насыпи полностью переходит 

в талое состояние. 

Существующее очертание насыпи показано черной утолщенной сплошной линией и практиче-

ски совпадает с результатами расчета. Реальная термическая просадка составляет 0,58 м, что превы-

шает просадку на третьей стадии расчета на 10,3 %. Для наглядности деформации на рис. 4 визуально 

увеличены в три раза. 

 

 
 

Рис. 4. Деформированный вид цифровой модели полупоперечного профиля 
 

 

Для возможности подтверждения количественной картины деформирования выполнено нало-

жение деформированного вида и изолиний перемещений узлов сетки по результатам третей стадии 

расчета (рис. 5). 
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Рис. 5. Качественная и количественная картина деформирования цифровой модели  

полупоперечного профиля 
 

По результатам выполненного расчета разработанной модели были получены следующие ре-

зультаты: 

– качественно картина деформирования полупоперечного профиля на участке автомобильной 

дороги Надым – Салехард близко отображает деформированный вид цифровой модели (рис. 4), форма 

термической просадки практически совпадает; 

– в откосных частях фиксируются активные сдвиговые смещения грунтов деятельного слоя, в 

связи с ползучестью и одновременным перераспределением объема слабых грунтов в основании, пред-

ставленных сильноразложившимся водонасыщенным торфом, который в свою очередь перемещается 

вниз ввиду вытаивания ледяных включений (рис. 5); 

– количественная картина деформирования подтверждается, суммарные перемещения узлов 

сетки модели достигли в месте расположения термической просадки 0,52 м, что на 10,3 % не совпадает 

с величиной просадки, определенной по результатам обследования (0,58 м).  

Анализируя полученные результаты, можно резюмировать следующее:  

– обоснованы модели поведения грунтов для геотехнической модели в условиях деградации 

ММГ в ЯНАО; 

– разработана модель, позволяющая оценивать и прогнозировать деформирование насыпи при де-

градации ММГ в условиях ЯНАО, не прибегая к анализу характера изменений его температурного поля; 

– сформулированы основные положения по моделированию участков, подвергшихся или по-

тенциально подверженных криогенным деформациям; 

– подтверждена качественная и количественная картина деформирования при сопоставлении ее 

с характером деформирования и величиной реальных деформаций в области термической просадки; 

– модель верифицирована и может быть использована для учета фактора деформирования в 

составе методики проектирования. 

Эксплуатация линейных транспортных сооружений в условиях деградации ММГ в ЯНАО тре-

бует проектирования и реализации специальных противодеформационных мероприятий, оценка эф-

фективности которых возможна с использованием разработанной геотехнической модели. 
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Abstract. The degradation of permafrost soils in the Yamalo-Nenets Autonomous District 

(YNAO) shows a negative trend of increasing, which is associated with both climate change 

and human engineering and economic activities. The article examines the issue of the occur-

rence of ground subsidence in the foundation of linear transport infrastructure in the Arctic 

zone of the Russian Federation from the perspective of establishing a relationship between 

cryogenic deformations and soil characteristics. A geotechnical model of the "embankment – 

foundation" system has been developed for conditions of permafrost degradation in the 

YNAO, enabling the design of measures to improve operational reliability through soil thermal 
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