Threat Analysis of Cyber Security in Wireless Adhoc Networks Using Hybrid Neural Network Model
- 作者: Demidov R.A.1, Zegzhda P.D.1, Kalinin M.O.1
-
隶属关系:
- Peter the Great St.Petersburg Polytechnic University
- 期: 卷 52, 编号 8 (2018)
- 页面: 971-976
- 栏目: Article
- URL: https://journals.rcsi.science/0146-4116/article/view/175687
- DOI: https://doi.org/10.3103/S0146411618080084
- ID: 175687
如何引用文章
详细
The article discusses the problem of analysis of cybersecurity threats in wireless ad hoc networks—VANET, FANET, MARINET, MANET, WSN. The problem of neural network approximation of the function of cyber threat existence in the system is formulated. The parameters of the neural network model were optimized according to the likelihood maximization criterion on the training data set. A hybrid neural network based on recurrent and graph convolutional neural networks is proposed as a solution architecture.
作者简介
R. Demidov
Peter the Great St.Petersburg Polytechnic University
编辑信件的主要联系方式.
Email: rd@ibks.spbstu.ru
俄罗斯联邦, St. Petersburg, 195251
P. Zegzhda
Peter the Great St.Petersburg Polytechnic University
编辑信件的主要联系方式.
Email: zeg@ibks.ftk.spbstu.ru
俄罗斯联邦, St. Petersburg, 195251
M. Kalinin
Peter the Great St.Petersburg Polytechnic University
编辑信件的主要联系方式.
Email: max@ibks.spbstu.ru
俄罗斯联邦, St. Petersburg, 195251
补充文件
