Application of a Genetic Algorithm for Finding Edit Distances between Process Models


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Finding graph edit distances (determining the similarity of graph models) is an important task in various areas of computer science, such as image analysis, machine learning, and chemoinformatics. In recent years, due to the development of process mining techniques, it has become necessary to adapt the existing graph matching methods to be applied to the analysis of process models (annotated graphs) discovered from event logs of information systems. In particular, methods for finding the minimum graph edit distance can be used to reveal patterns (subprocesses) and to compare discovered process models. As was shown experimentally and theoretically substantiated, exact methods for finding the minimum edit distance between the discovered process models (and graphs in the general case) have a great time complexity and can be applied only to small-sized process models. In this paper, we estimate the accuracy and time performance characteristics of a genetic algorithm applied to find distances between process models discovered from the event logs. In particular, we find distances between BPMN (Business Process Model and Notation) models discovered from the event logs by using different synthesis algorithms. It is shown that the genetic algorithm proposed in the paper allows us to significantly reduce the computation time and produces results close to the optimal solutions (the minimum edit distances).

Об авторах

A. Kalenkova

National Research University Higher School of Economics, Laboratory of Process-Aware Information Systems

Автор, ответственный за переписку.
Email: akalenkova@hse.ru
Россия, 20 Myasnitskaya St., Moscow, 101000

D. Kolesnikov

National Research University Higher School of Economics, Faculty of Computer Science

Автор, ответственный за переписку.
Email: dakolesnikov@edu.hse.ru
Россия, 20 Myasnitskaya St., Moscow, 101000

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Allerton Press, Inc., 2019

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).