Using Hybrid Discriminative-Generative Models for Binary Classification


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Discriminative and generative machine learning algorithms have been successfully used in different classification tasks during the last several decades. They both have some advantages and disadvantages and depending on a problem, one type of algorithm performs better than the other one. In this paper we contribute to the research of combination of both approaches and propose literature based a hybrid discriminative-generative generic model. Also, we propose hybrid model structure finding and building a new algorithm. We present theoretical and practical advantages of the hybrid model over its consisting algorithms, efficiency of the model structure finding algorithm, then perform experiments and compare results.

Об авторах

N. Abroyan

Institute of Information and Telecommunication Technologies and Electronics,
National Polytechnic University of Armenia

Автор, ответственный за переписку.
Email: n.abroyan@polytechnic.am
Армения, Yerevan, 375009

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Allerton Press, Inc., 2019

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).