Decoding the Tensor Product of MLD Codes and Applications for Code Cryptosystems


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

For the practical application of code cryptosystems such as McEliece, the code used in the cryptosystem should have a fast decoding algorithm. On the other hand, the code used must ensure that finding a secret key from a known public key is impractical with a relatively small key size. In this connection, in the present paper it is proposed to use tensor product \({{C}_{1}} \otimes {{C}_{2}}\) of group MLD codes \({{C}_{1}}\) and \({{C}_{2}}\) in a McEliece-type cryptosystem. The algebraic structure of code \({{C}_{1}} \otimes {{C}_{2}}\) in a general case differs from the structure of codes \({{C}_{1}}\) and \({{C}_{2}}\), so it is possible to build stable cryptosystems of the McEliece type even on the basis of codes \({{C}_{i}}\) for which successful attacks on the key are known. However, in this way there is a problem of decoding code \({{C}_{1}} \otimes {{C}_{2}}\). The main result of this paper is the construction and validation of a series of fast algorithms needed for decoding this code. The process of constructing the decoder relies heavily on the group properties of code \({{C}_{1}} \otimes {{C}_{2}}\). As an application, the McEliece-type cryptosystem is constructed on code \({{C}_{1}} \otimes {{C}_{2}}\) and an estimate is given of its resistance to attack on the key under the assumption that for code cryptosystems on codes \({{C}_{i}}\) an effective attack on the key is possible. The results obtained are numerically illustrated in the case when \({{C}_{1}}\) and \({{C}_{2}}\) are Reed–Muller–Berman codes for which the corresponding code cryptosystem was hacked by L. Minder and A. Shokrollahi (2007).

Об авторах

V. Deundyak

Southern Federal University; FGNU NII Specvuzavtomatika

Автор, ответственный за переписку.
Email: vl.deundyak@gmail.com
Россия, Rostov-on-Don, 344006; Rostov-on-Don, 344002

Y. Kosolapov

Southern Federal University

Email: vl.deundyak@gmail.com
Россия, Rostov-on-Don, 344006

E. Lelyuk

Southern Federal University

Email: vl.deundyak@gmail.com
Россия, Rostov-on-Don, 344006

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Allerton Press, Inc., 2018

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).