Key Technologies of Confrontational Intelligent Decision Support for Multi-Agent Systems


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

This paper firstly studies intelligent learning techniques based on reinforcement learning theory. It proposes an improved multi-agent cooperative learning method that can be shared through continuous learning and the strategies of individual agents to achieve the integration of multi-agent strategy and learning in order to improve the capabilities of intelligent multi-agent systems. Secondly, according to the analysis of data mining and AHP theory, a new concept is proposed to build a data mining model (based on intelligent learning) that has been named ‘ACMC’ (AHP Construct Mining Component); designed ACMC strategy evaluation and assistant decision-making based on multiagent systems, to achieve a strategic assessment of the current situation and reach a final decision. Finally, after research on Intelligent Decision Technology based on game theory, aspects of game theory are employed to deal with the real demand of confrontational environments.

Об авторах

Yun Zhang

School of Computer Science and Technology

Автор, ответственный за переписку.
Email: yunzhang710@163.com
Китай, Xi’an, Shaanxi, 710054

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Allerton Press, Inc., 2018

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).