Improving Medical CT Image Blind Restoration Algorithm Based on Dictionary Learning by Alternating Direction Method of Multipliers


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

In this paper, the medical CT image blind restoration is translated into two sub problems, namely, image estimation based on dictionary learning and point spread function estimation. A blind restoration algorithm optimized by the alternating direction method of multipliers for medical CT images was proposed. At present, the existing methods of blind image restoration based on dictionary learning have the problem of low efficiency and precision. This paper aims to improve the effectiveness and accuracy of the algorithm and to improve the robustness of the algorithm. The local CT images are selected as training samples, and the K-SVD algorithm is used to construct the dictionary by iterative optimization, which is beneficial to improve the efficiency of the algorithm. Then, the orthogonal matching pursuit algorithm is employed to implement the dictionary update. Dictionary learning is accomplished by sparse representation of medical CT images. The alternating direction method of multipliers (ADMM) is used to solve the objective function and realize the local image restoration, so as to eliminate the influence of point spread function. Secondly, the local restoration image is used to estimate the point spread function, and the convex quadratic optimization method is used to solve the point spread function sub problems. Finally, the optimal estimation of point spread function is obtained by iterative method, and the global sharp image is obtained by the alternating direction method of multipliers. Experimental results show that, compared with the traditional adaptive dictionary restoration algorithm, the new algorithm improves the objective image quality metrics, such as peak signal to noise ratio, structural similarity, and universal image quality index. The new algorithm optimizes the restoration effect, improves the robustness of noise immunity and improves the computing efficiency.

Об авторах

Yunshan Sun

School of Information Engineering

Автор, ответственный за переписку.
Email: sunyunshan@tjcu.edu.cn
Китай, Tianjin, 300134 PRC

Teng Fei

School of Information Engineering

Email: sunyunshan@tjcu.edu.cn
Китай, Tianjin, 300134 PRC

Liyi Zhang

School of Information Engineering; School of Electric Information Engineering

Email: sunyunshan@tjcu.edu.cn
Китай, Tianjin, 300134 PRC; Tianjin, 300072 PRC

Xiaopei Liu

School of Information Engineering; School of Electric Information Engineering

Email: sunyunshan@tjcu.edu.cn
Китай, Tianjin, 300134 PRC; Tianjin, 300072 PRC

Jingyu Zhang

School of Electric Information Engineering

Email: sunyunshan@tjcu.edu.cn
Китай, Tianjin, 300072 PRC

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Allerton Press, Inc., 2018

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».