Long-term Monitoring of Pollution of the Coastal Water Area of Ussuriysk Bay with Metals: Case Study of “Green” Oysters Magallana gigas (= Crassostrea gigas) (Thunberg, 1793)

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In September 2021, the content of heavy metals Pb, Cu, Cd, Zn, Ni, Fe, and Mn was estimated in the tissues of the oyster Magallana gigas (= Crassostrea gigas) (Thunberg, 1793) and in the silty fraction of bottom sediments from mollusk habitats in coastal waters around the Muravyov-Amursky Peninsula, including the most polluted area off the western coast of Ussuri Bay of the Sea of Japan. It has been shown that, despite the reclamation of the landfill located here in 2010, being the main source of metal pollution, copper is present in high concentrations in bottom sediments and tissues of oysters, giving them a green color. The mollusks living in this area also retain a high concentration of zinc. The concentrations of Pb, Cd, and Ni in oyster tissues over the past 20 years have decreased by 2–5 times in accordance with the decrease in the number of mobile forms of these metals in bottom sediments; however, they are still 3–6 times higher than regional estimates for polluted water areas. With abnormal accumulation of copper, manganese, on the contrary, demonstrates a decrease in the concentration in the tissues of oysters from the most polluted stations, reflecting the deterioration of the physiological state of mollusks. The results obtained indicate the need to continue the remediation of the western coast of Ussuri Bay and monitor the pollution of coastal waters with metals.

Sobre autores

V. Shulkin

Pacific Geographical Institute (PGI), Far Eastern Branch, Russian Academy of Sciences

Autor responsável pela correspondência
Email: shulkin@tigdvo.ru
Russia, 690041, Vladivostok

V. Kavun

Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences

Email: shulkin@tigdvo.ru
Russia, 690041, Vladivostok

Bibliografia

  1. Гигиенические требования к качеству и безопасности продовольственного сырья и пищевых продуктов. СанПиН 2.3.2.560-96. М.: Госкомсанэпиднадзор России. 1997. 270 с.
  2. Гигиенические требования безопасности и пищевой ценности пищевых продуктов. СанПиН 2.3.2.1078-01. 2008. https://gosstandart.info/data/ documents/sanpin3.2.1078-01
  3. Елпатьевский П.В. Геохимия миграционных потоков в природных и природно-техногенных геосистемах. М.: Наука. 1993. 253 с.
  4. Кику Д.П., Ковековдова Л.Т. Оценка содержания микроэлементов в устрицах гигантских (Crassostrea gigas) из залива Петра Великого (Японское море) // Изв. ТИНРО. 2007. Т. 150. С. 400–407.
  5. Коженкова С.И., Христофорова Н.К., Чернова Е.Н., Кобзарь А.Д. Долговременный биомониторинг загрязнения Уссурийского залива Японского моря тяжелыми металлами // Биол. моря. 2021. Т. 47. № 4. С. 235−243.
  6. Подгурская О.В., Кавун В.Я. Оценка адаптационно-защитного потенциала двустворчатых моллюсков Modiolus modiolus (Linnaeus, 1758) и Crenomytilus grayanus (Dunker, 1853) в условиях повышенного содержания тяжелых металлов в среде // Биол. моря. 2012. Т. 38. № 2. С. 174−182.
  7. Христофорова Н.К. Биоиндикация и мониторинг загрязнения морских вод тяжелыми металлами. Л.: Наука. 1989. 192 с.
  8. Христофорова Н.К., Гнетецкий А.В. Содержание тяжелых металлов в долгоживущих митилидах Уссурийского залива Японского моря // Биол. моря. 2022. Т. 48. № 1. С. 30−37.
  9. Шулькин В.М., Кавун В.Я., Ткалин А.В., Пресли Б.Дж. Влияние концентрации металлов в донных отложениях на их накопление митилидами Crenomytilus grayanus и Modiolus kurilensis // Биол. моря. 2002. Т. 31. № 1. С. 53−60.
  10. Яцук А.В., Обжиров А.И., Гресов А.И., Коровицкая Е.В. Газогеохимия и геоэкология полигона твердых бытовых отходов г. Владивостока // В кн. Современное экологическое состояние залива Петра Великого Японского моря. Владивосток: ДВФУ. 2012. С. 426−438.
  11. Amiard J.C., Amiard-Triquet C., Charbonnier L. et al. Bioaccessibility of essential and non-essential metals in commercial shellfish from Western Europe and Asia // Food Chem. Toxicol. 2008. V. 46. P. 2010–2022.
  12. Fang T.H., Dai S.Y. Green oysters occurring in an industrial harbor in Central Taiwan // Mar. Pollut. Bull. 2017. V. 124 (2). P. 1006−1013.
  13. Hariharan G., Purvaja R., Ramesh R. Toxic effects of lead on biochemical and histological alterations in green mussel (Perna viridis) induced by environmentally relevant concentrations // J Toxicol. Environ. Health A. 2014. V. 77. № 5. P. 246–260. https://doi.org/10.1080/15287394.2013.861777
  14. George S.G., Piris B.J.S., Cheyne A.R. et al. Detoxification of metals by marine bivalves: An ultrastructural study of the compartmentation of Cu and Zn in the oyster Ostrea edulis // Mar. Biol. 1978. V. 45. P. 147–156.
  15. Jeong H., Ra K., Won J. A nationwide survey of trace metals and Zn isotopic signatures in mussels (Mytilus edulis) and oysters (Crassostrea gigas) from the coast of South Korea // Mar. Poll. Bull. 2021. V. 173. P. 113061.
  16. Jonathan M.P., Munoz-Sevilla N.P., Gongora-Gomez A.M. et al. Bioaccumulation of trace metals in farmed pacific oysters Crassostrea gigas from SW gulf of California coast, Mexico // Chemosphere. 2017. V. 187. P. 311–319.
  17. Kavun V.Y., Yurchenko O.V., Podgurskaya O.V. Integrated assessment of the acclimation capacity of the marine bivalve Crenomytilus grayanus under naturally highly contaminated conditions: subcellular distribution of trace metals and structural alterations of nephrocytes // Sci. Total. Environ. 2020. V. 734. 139015.
  18. Kournoutou G.G., Giannopoulou P.C., Sazakli E. et al. Oxidative damage of mussels living in seawater enriched with trace metals, from the viewpoint of proteins expression and modification // Toxics. 2020. V. 8. P. 89. https://doi.org/10.3390/toxics8040089
  19. Le T.T.Y., Zimmermann S., Sures B. How does the metallothionein induction in bivalves meet the criteria for biomarkers of metal exposure? // Environ. Pollut. 2016. V. 212. P. 257−268.
  20. Liu F., Rainbow F.S., Wang W.X. Inter-site differences of zinc susceptibility of the oyster Crassostrea hongkongensis // Aquat. Toxicology. 2013. V. 132. P. 26–33.
  21. Lu G., Zhu A., Fang H. et al. Establishing baseline trace metals in marine bivalves in China and worldwide: Met-analysis and modeling approach // Sci. Tot. Environ. 2019. V. 669. P. 746−753.
  22. Luoma S.N. Can we determine the biological availability of sediment bound trace elements? // Hydrobiology. 1989. V. 176. P. 379–396.
  23. Meng J., Wang W.-X., Li L., Zhang G. Accumulation of different metals in oyster Crassostrea gigas: Significance and specificity of SLC39A (ZIP) and SLC30A (ZnT) gene families and polymorphism variation // Environ. Pollut. 2021. V. 276. P. 116706.
  24. Phillips D.J.H. The use of biological indicator organisms to monitor trace metal pollution in marine and estuarine environments – a review // Environ. Pollut. 1977. V. 13. P. 281–317.
  25. Rainbow P.S., Phillips D.J.H. Cosmopolitan biomonitors of trace metals // Mar. Poll. Bull. 1993. V. 26. P. 593–601.
  26. Roosenburg W.H. Greening and Cu accumulation in the American oyster, Crassostrea virginica, in the vicinity of a steam electric generating station // Chesapeake Sci. 1969. V. 10. C. 241–252.
  27. Shulkin V.M., Presley B.J., Kavun V.Ia. Metal concentrations in mussel Crenomytilus grayanus and oyster Crassostrea gigas in relation to contamination of ambient sediments // Environ. Int. 2003. V. 29. P. 493–502.
  28. Wang W.X., Yang Y., Guo X. et al. Copper and zinc contamination in oysters: subcellular distribution and detoxification // Environ. Toxicol. Chem. 2011. V. 30. P. 1767–1774.
  29. Warmer H., van Dokkum R. Water pollution control in the Netherlands. Policy and practice 2001. RIZA report 2002.009. Lelystad. 2002. 77 p.
  30. Weng N., Wang W.X. Variations of trace metals in two estuarine environments with contrasting pollution histories // Sci. Total Environ. 2014. V. 485. P. 604−614.
  31. Zhou Q., Zhang J., Fu J. et al. Biomonitoring: an appealing tool assessment of metal pollution in the aquatic ecosystem // Anal. Chim. Acta. 2008. V. 606. P. 135–150.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (1MB)
3.

Baixar (557KB)
4.

Baixar (493KB)

Declaração de direitos autorais © В.М. Шулькин, В.Я. Кавун, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies