Morphological Analysis of the Hemolymph Cell Composition in the Bivalve Mollusk Anadara broughtonii Schrenck, 1867 (Sea of Japan)

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The hemolymph cells of the ark clam Anadara broughtonii were examined using light microscopy, flow cytometry and gradient centrifugation. All three methods of analysis made it possible to identify two main types of cells in the hemolymph of the ark clam Anadara broughtonii – large granular erythrocytes and small agra-nular amebocytes. Erythrocytes accounted for 95.6 ± 0.9% of the total number of hemolymph cells. Erythrocytes were hemoglobin-containing cells with a great number of granules in the cytoplasm, a low nuclear-cytoplasmic ratio (NCR) and a lower intensity of cellular respiration compared to amebocytes. Amebocytes are cells of predominantly irregular shape with a high number of cells that do not contain or contain no more than 10 granular inclusions in the cytoplasm. All types of hemocytes found in the ark clam hemolymph demonstrated the same ability to spontaneously produce reactive oxygen species. For the first time, it has been shown that red blood cells of the ark clam Anadara broughtonii are capable of phagocytosis. At the same time, amebocytes absorbed on the average two times more zymosan particles (10.3 ± 0.7 pcs.), compared to erythrocytes (5.3 ± 0.1 pcs.).

Негізгі сөздер

Авторлар туралы

E. Kladchenko

A.O. Kovalevsky Institute of Biology of the Southern Seas, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: kladchenko_ekaterina@bk.ru
Russia, 299011, Sevastopol

T. Kukhareva

A.O. Kovalevsky Institute of Biology of the Southern Seas, Russian Academy of Sciences

Email: kladchenko_ekaterina@bk.ru
Russia, 299011, Sevastopol

V. Rychkova

A.O. Kovalevsky Institute of Biology of the Southern Seas, Russian Academy of Sciences

Email: kladchenko_ekaterina@bk.ru
Russia, 299011, Sevastopol

E. Chelebieva

A.O. Kovalevsky Institute of Biology of the Southern Seas, Russian Academy of Sciences

Email: kladchenko_ekaterina@bk.ru
Russia, 299011, Sevastopol

A. Andreyeva

A.O. Kovalevsky Institute of Biology of the Southern Seas, Russian Academy of Sciences

Email: kladchenko_ekaterina@bk.ru
Russia, 299011, Sevastopol

Әдебиет тізімі

  1. Анисимова А.А. Морфофункциональные параметры гемоцитов в оценке физиологического состояния двустворчатых моллюсков // Биол. моря. 2013. Т. 39. № 6. С. 389−399.
  2. Анисимова А.А., Дягилева М.Н., Карушева О.А. и др. Состав и кинетика клеточной популяции гемоцитов у двустворчатого моллюска Crenomytilus grayanus (Dunker, 1853) // Биол. моря. 2022. Т. 48. № 4. С. 251–261.
  3. Афейчук Л.С. Оценка состояния промысловых скоплений анадары Броутона (Anadara broughtonii) в заливе Петра Великого (Японское море) по результатам мониторинга 2010–2020 годов // Национальная (всероссийская) научно-практическая конференция “Природные ресурсы, их современное состояние, охрана, промысловое и техническое использование”. Камчатский государственный технический университет. 2021. № 12. С. 11–15.
  4. Присный А.А., Пигалева Т.А., Кулько С.В. Морфофункциональные особенности гемоцитов сухопутных брюхоногих моллюсков // Фундаментальные исследования. 2011. № 5. С. 206–210.
  5. Allam B., Ashton-Alcox K.A., Ford S.E. Flow cytometric comparison of haemocytes from three species of bivalve molluscs // Fish Shellfish Immunol. 2002. V. 13. № 2. P. 141–158.
  6. Andreyeva A.Y., Efremova E.S., Kukhareva T.A. et al. Morphological and functional characterization of hemocytes in cultivated mussel (Mytilus galloprovincialis) and effect of hypoxia on hemocyte parameters // Fish Shellfish Immunol. 2019. V. 89. P. 361–367.
  7. Bachère E., Rosa R.D., Schmitt P. et al. The new insights into the oyster antimicrobial defense: Cellular, molecular and genetic view // Fish Shellfish Immunol. 2015. V. 46. № 1. P. 50–64.
  8. Cao A., Mercado L., Ramos-Martinez J.I. et al. Primary cultures of hemocytes from Mytilus galloprovincialis Lmk.: expression of IL-2Rα subunit // Aquaculture. 2003. V. 216. № 1–4. P. 1–8.
  9. Cohen W.D., Nemhauser I. Association of centrioles with the marginal band of a molluscan erythrocyte // J. Cell Biol. 1980. V. 86. № 1. P. 286–291.
  10. Dang C., Cribb T.H., Osborne G. et al. Effect of a hemiuroid trematode on the hemocyte immune parameters of the cockle Anadara trapezia // Fish Shellfish Immunol. 2013. V. 35. № 3. P. 951–956.
  11. De la Ballina N.R., Maresca F., Cao A. et al. Bivalve haemocyte subpopulations: A Review // Frontiers in Immunology. 2022. V. 13.
  12. De Zwaan A., Isani G., Cattani O., Cortesi P. Long-term ana-erobic metabolism of erythrocytes of the arcid clam Scapharca inaequivalvis // J. Exp. Mar. Biol. Ecol. 1995. V. 187. № 1. P. 27–37.
  13. Donaghy L., Kim B.K., Hong H.K. et al. Flow cytometry studies on the populations and immune parameters of the hemocytes of the Suminoe oyster, Crassostrea ariakensis // Fish Shellfish Immunol. 2009. V. 27. № 2. P. 296–301.
  14. Fonseca V.B., Cruz B.P., da Silva S.S. et al. Morphological characterization of hemocytes of the brown mussel Perna perna: an update // Fish Shellfish Immunol. 2022. V. 120. P. 139–141.
  15. Ford S.E., Ashton-Alcox K.A., Kanaley S.A. Comparative cytometric and microscopic analyses of oyster hemocytes // J. Invertebr. Pathol. 1994. V. 64. № 2. P. 114–122.
  16. Funakoshi S. Studies on the classification, structure and function of hemocytes in bivalves // Bull. Natl. Res. Inst. Aquac. (Jpn.). 2000. V. 29. P. 1–103.
  17. Gerdol M., Gomez-Chiarri M., Castillo M.G. et al. Immunity in molluscs: recognition and effector mechanisms, with a focus on Bivalvia // Adv. Immunol. Springer Cham. 2018. P. 225–341.
  18. Hameed A., Muhammad F., Muhammad A.A. et al. Morphological and structural characterization of blood cells of Anadara antiquata // Iran. J. Fish. Sci. 2018. V. 17. № 3. P. 613–619.
  19. Hegaret H., Wikfors G.H., Soudant P. Flow cytometric ana-lysis of haemocytes from eastern oysters, Crassostrea virginica, subjected to a sudden temperature elevation: II. Haemocyte functions: aggregation, viability, phagocytosis, and respiratory burst // J. Exp. Mar. Biol. Ecol. 2003. V. 293. № 2. P. 249–265.
  20. Holden J.A., Pipe R.K., Quaglia A., Ciani G. Blood cells of the arcid clam, Scapharca inaequivalvis // J. Mar. Biol. Ass. U.K. 1994. V. 74. № 2. P. 287–299.
  21. Kim J.H., Lee H.M., Cho Y.G. et al. Flow cytometric cha-racterization of the hemocytes of blood cockles Anadara broughtonii (Schrenck, 1867), Anadara kagoshimensis (Lischke, 1869), and Tegillarca granosa (Linnaeus, 1758) as a biomarker for coastal environmental monitoring // Mar. Pollut. Bull. 2020. V. 160. Article 111654.
  22. Kladchenko E.S., Andreyeva A.Y., Kukhareva T.A. Effect of ranged short-term hypoxia on functional and morphological parameters of hemocytes in the Pacific oyster Crassostrea gigas (Thunberg, 1793) // J. Evol. Biochem. Physiol. 2022. V. 58. № 1. P. 45–53.
  23. Kolyuchkina G.A., Ismailov A.D. Morpho-functional cha-racteristics of bivalve mollusks under the experimental environmental pollution by heavy metals // Oceanology. 2011. V. 51. № 5. P. 804. https://doi.org/10.1134/S0001437011050092
  24. Matozzo V. Aspects of eco-immunology in molluscs // Invertebr. Surviv. J. 2016. V. 13. № 1. P. 116–121.
  25. Mello D.F., De Oliveira E.S., Vieira R.C. et al. Cellular and transcriptional responses of Crassostrea gigas hemocytes exposed in vitro to brevetoxin (PbTx-2) // Mar. Drugs. 2012. V. 10. № 3. P. 583–597.
  26. Mix M.C. A general model for leukocyte cell renewal in bivalve mollusks // Mar. Fish. Rev. 1976. V. 38. № 10. P. 37–41.
  27. Nakahara Y., Shimura S., Ueno C. et al. Purification and characterization of silkworm hemocytes by flow cyto-metry // Dev. Comp. Immunol. 2009. V. 33. № 4. P. 439–448.
  28. Novitskaya V.N., Soldatov A.A. Peculiarities of functional morphology of erythroid elements of hemolymph of the bivalve mollusk Anadara inaequivalvis, the Black Sea // Hydrobiol. J. 2013. V. 49. № 6. P. 64−71.
  29. Novoa B., Figueras A. Immune responses in molluscs and their implications for disease control // Infectious Di-sease in Aquaculture, Cambridge: Woodhead Publi-shing. 2012. P. 88–110.
  30. Ottaviani E., Franchini A., Barbieri D., Kletsas D. Compa-rative and morphofunctional studies on Mytilus galloprovincialis hemocytes: Presence of two aging-related hemocyte stages // Ital. J. Zool. 1998. V. 65. № 4. P. 349–354.
  31. Parisi M.G. Mauro M., Sarà G., Cammarata M. Temperature increases, hypoxia, and changes in food availability affect immunological biomarkers in the marine mussel Mytilus galloprovincialis // J. Comp. Physiol. B. 2017. V. 187. № 8. P. 1117–1126.
  32. Rebelo M.d.F., Figueiredo E.d.S., Mariante R.M. et al. New insights from the oyster Crassostrea rhizophorae on bivalve circulating hemocytes // PLoS One. 2013. V. 8. № 2. art. ID e57384. https://doi.org/10.1371/journal.pone.0057384
  33. Rodrick G.E., Ulrich S.A. Microscopical studies on the hemocytes of bivalves and their phagocytic interaction with selected bacteria // Helgoländer Wiss. Meeresunters. 1984. V. 37. № 1. P. 167–176.
  34. Rosa I.C., Garrido R., Re A. et al. Sensitivity of the invasive bivalve Corbicula fluminea to candidate control chemicals: the role of dissolved oxygen conditions // Sci. Total Environ. 2015. V. 536. P. 825–830.
  35. Travers M.A., Da Silva P.M., Le Goïc N. et al. Morphologic, cytometric and functional characterisation of abalone (Haliotis tuberculata) haemocytes // Fish Shellfish Immunol. 2008. V. 24. № 4. P. 400–411.
  36. Wang W., Li M., Wang L. et al. The granulocytes are the main immunocompetent hemocytes in Crassostrea gigas // Dev. Comp. Immunol. 2017. V. 67. P. 221–228.
  37. Wang Y., Zhou S., Liu T. et al. De novo transcriptome ana-lysis of stressed blood clam (Anadara broughtonii) and identification of genes associated with hemoglobin // Genes Genomics. 2020. V. 42. № 2. P. 189–202.
  38. Zhou L., Yang A., Liu Z. et al. Changes in hemolymph cha-racteristics of ark shell Scapharca broughtonii dealt with Vibrio anguillarum challenge in vivo and various of anticoagulants in vitro // Fish Shellfish Immunol. 2017. V. 61. P. 9–15.
  39. Zhou L., Yang A., Wang Q. et al. Studies on the hemocytes types and their immunological functions in bloody clam (Scapharca broughtonii) // J. Fish. China. 2013. V. 37. № 4. P. 599–606.
  40. Zhou L., Zhao D., Wu B. et al. Ark shell Scapharca broughtonii hemocyte response against Vibrio anguillarum challenge // Fish Shellfish Immunol. 2019. V. 84. P. 304–311. https://doi.org/10.1016/j.fsi.2018.09.039

Қосымша файлдар


© Е.С. Кладченко, Т.А. Кухарева, В.Н. Рычкова, Э.С. Челебиева, А.Ю. Андреева, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>