УДК 544.236.4

ВЯЗКОУПРУГОСТЬ РАСПЛАВОВ $ME_2O-B_2O_3$ (ME = LI, NA, K, CS)

© 2024 г. Хохряков А. А.*, Самойлова М. А., Рябов В. В.

Институт металлургии УрО РАН, 620016, Россия, Екатеринбург, ул. Амундсена, 101
*e-mail: хохгуакоv46@mail.ru
Поступила в редакцию 7.06.24
После доработки 10.09.24
Принята к публикации 13.09.24

Методом вибрационной вискозиметрии измерены вязкоупругие характеристики щелочноборатных расплавов при $T=1173~\rm K$ в интервале концентраций $0-56~\rm mon$. $%~\rm Me_2O$ на частоте $32~\rm \Gamma ц$. Получены значения динамической вязкости, модулей сдвига, тангенса угла механических потерь и времена релаксации. Показано экстремальное поведение вязкоупругих характеристик расплава в зависимости от состава расплава. Положения экстремумов коррелируют с существованием в борокислородной сетке расплавов определенных надструктурных единиц. Предположено, что низкочастотная вязкоупругая релаксация расплавов проходит посредством диффузионного обмена возбужденными атомами кластеров, состоящими из надструктурных единиц расплава и «фоновыми» некольцевыми группами расплавов. Из-за большого времени жизни кластеры не успевают реагировать на внешние возмущения, вследствие этого расплавы проявляют упругие свойства.

Ключевые слова: вязкоупругость, щелочноборатный расплав, вязкоупругие характеристики, катион-модификатор, диффузионный обмен, кластеры

DOI: 10.31857/S0132665124060033, **EDN:** DWTBCH

ВВЕДЕНИЕ

Щелочноборатные расплавы составляют основу многих шлаков, стекол и эмалей. Изучение вязкоупругих свойств этих систем при повышенных температурах представляет большой интерес. Вязкоупругие характеристики боратных расплавов влияют на кинетику химических реакций, процессы тепло- и массообменна, скорость установления фазовых равновесий и кинетику кристаллизации расплава. В научной литературе имеется немного работ по сдвиговой вязкости щелочноборатных расплавов [1—17]. Концентрационные интервалы измерений вязкости крайне неоднородны и получены только до $T \sim 1473$ К. Большинство работ посвящено исследованию вязкости натрийборатных расплавов [1—6]. Вязкость щелочноборатных расплавов во всех проведенных экспериментах измерена в равновесных условиях при постоянной скорости сдвига.

Цель настоящей работы — изучить вязкоупругие свойства щелочноборатных расплавов в условиях периодических измерений скорости сдвига, в концентрационном интервале $0 \le x \le 56$ мол. % $\mathrm{Me_2O}$ (Me = Li, Na, K, Cs) при T=1173 K, и сравнить ее со сдвиговой вязкостью, полученной при постоянной скорости сдвига.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

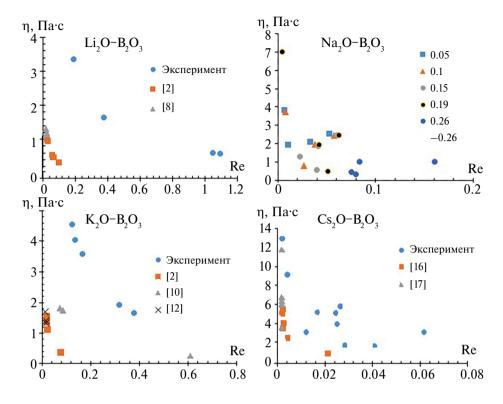
Боратные смеси готовили из предварительно переплавленного порошка оксида бора B_2O_3 и карбоната соответствующего щелочного металла Me_2CO_3 (Me = Li, Na, K, Cs). Затем стеклообразный B_2O_3 нагревали в платиновом контейнере до 1273 К и добавляли карбонат щелочного металла. Расплав выдерживали при T=1273 К в течение 40 мин и проводили измерения. Вязкоупругие характеристики расплава измерены вибрационным методом [18] на вискозиметре, работающем в режиме вынужденных колебаний с частотой 32 Гц [19] с точностью $\pm 5\%$. В цезийборатных распалавах был использован более мелкий концентрационный шаг изменения вязкости, по сравнению с другими щелочноборатными расплавами. Это было связано с очень небольшой концентрационной областью изменения вязкоупругих характеристик, доступных для используемого метода измерений.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Удобным параметром для оценки полей вязкого течения является число Рейнольдса. Оно характеризует отношение силы инерции к силе вязкого трения. Числа Рейнольдса (Re) рассчитывали по формуле [20]

$$Re = \frac{LV}{\eta'/\rho},\tag{1}$$

где L — длина шпинделя (м) (часть стрежня, погруженного в расплав), V — средняя скорость движения шпинделя (м/с), η' — динамическая вязкость расплава ($\Pi a \cdot c$), ρ — плотность расплава ($\kappa r/m^3$) [21, 22].


Из рис. 1 видно, что числа Рейнольдса имеют низкие значения для всех изученных расплавов. Это означает, что в расплавах не возникают неустойчивости, которые могли бы привести к отклонению вязкости от ньютоновского течения. Резкое изменение вязкости, измеренной вибрационным методом, по отношению к сдвиговой вязкости η (табл. 1, 2) связано с проявлением упругих свойств расплава, когда вязкость начинает зависеть от скорости деформации расплава. В этом случае энергия осцилляций не только расходуется на динамическую вязкость (η), но и накапливается в виде добавочной компоненты — мнимой (накопительной) вязкости (η), связанной с модулем упругости борокислородной сетки расплава (G/ ω) [23]. Комплексную вязкость можно представить следующим отношением (2):

$$\eta^* = \eta'(\omega) - i\eta''(\omega) = \eta'(\omega) - \frac{G'}{\omega}, \tag{2}$$

а модуль комплексного коэффициента вязкости можно вычислить по формуле

$$\eta^* = \sqrt{\eta'(\omega)^2 + \left(\frac{G'}{\omega}\right)^2} \tag{3}$$

Здесь $\eta'(\omega)$ — динамическая вязкость, которая совпадает по фазе со скоростью сдвига и связана с диссипацией энергии в тепло, $\eta''(\omega)$ — компонента, связанная с упругостью среды, G' — модуль упругости, совпадающий по фазе с деформацией и отвечающий накоплению упругой энергии при периодическом деформировании расплава.

Рис. 1. Корреляция вязкости расплавов $Me_2O-B_2O_3$ (Me=Li, Na, K, Cs) с числами Re. Числа на правом верхнем графике — концентрации шелочного оксида (мол. %); на остальных графиках в квадратных скобках указаны соответствующие литературные источники.

Экспериментально на вибрационном вискозиметре регистрируется динамическая вязкость — $\eta'(\omega)$. Накопительная вязкость $\eta''=G'/\omega$ вычислена с помощью математической модели, предложенной в работе [24]. Эта модель рассматривает колебания расплава, совершаемые в направлении, перпендикулярном оси осциллирующего стержня, под действием периодической вынуждающей силы. Формула расчета модуля упругости G' имеет следующий вид:

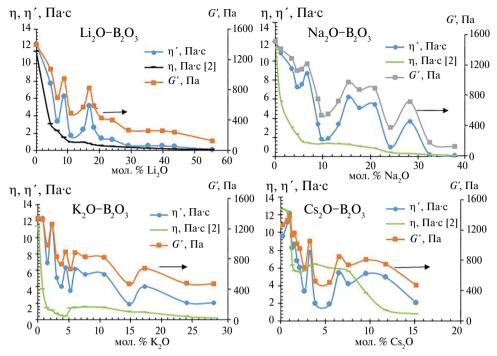
$$G' = \frac{\omega \pi^2 \rho_0 R}{2} \sqrt{\frac{2\eta' \omega}{\rho}},\tag{4}$$

где ρ_0 — плотность материала шпинделя (платина), ρ — плотность расплава, R — радиус стержня (шпинделя), ω — частота колебаний шпинделя, η' — динамическая вязкость.

Экспериментальные данные по сдвиговой η и динамической вязкости η' , а также вычисленные значения вязкоупругих характеристик G', η^* ,tg δ и τ_i расплавов $Me_2O-B_2O_3$ (Me=Li, Na, K, Cs) представлены в табл. 1, 2.

Рассмотрим характеристики сдвиговой вязкости η в зависимости от состава расплава (рис. 2, табл. 1, 2). Из рис. 2 видно, что первый минимум

Таблица 1. Вязкоупругие характеристики расплавов $\text{Li}_2\text{O}-\text{B}_2\text{O}_3$ и $\text{Na}_2\text{O}-\text{B}_2\text{O}_3$ при T=900-1600K

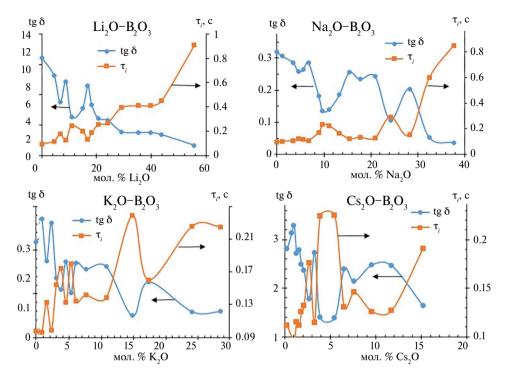

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	r	1	1	r	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	мол. % Li ₂ O	η, Па·с [4]		<i>G</i> ′, Па		tg δ	τ_i , c
6.7 2.27 3.4 611.3 19.4 0.18 0.18 8.8 1.46 6.3 828.3 26.6 0.24 0.13 10.9 0.97 1.7 428.0 13.5 0.13 0.25 14.9 0.94 2.4 503.6 15.9 0.16 0.20 16.8 0.80 5.2 721.5 23.1 0.23 0.14 18.2 0.66 2.7 515.8 16.3 0.17 0.19 20.6 0.53 1.4 373.9 11.8 0.12 0.25 24.1 0.46 1.3 349.5 11.0 0.12 0.27 29.1 0.36 0.6 234.6 7.4 0.08 0.39 35.34 0.26 0.5 225.9 7.1 0.08 0.41 43.7 0.15 0.4 208.2 6.5 0.07 0.45 55.6 0.10 0.1 112.5 3.5 0.03	0	11.40	12.3	1222.0	40.1	0.32	0.10
8.8 1.46 6.3 828.3 26.6 0.24 0.13 10.9 0.97 1.7 428.0 13.5 0.13 0.25 14.9 0.94 2.4 503.6 15.9 0.16 0.20 16.8 0.80 5.2 721.5 23.1 0.23 0.14 18.2 0.66 2.7 515.8 16.3 0.17 0.19 20.6 0.53 1.4 373.9 11.8 0.12 0.25 24.1 0.46 1.3 349.5 11.0 0.12 0.27 29.1 0.36 0.6 234.6 7.4 0.08 0.39 35.34 0.26 0.5 225.9 7.1 0.08 0.41 39.8 0.20 0.5 225.9 7.1 0.08 0.41 43.7 0.15 0.4 208.2 6.5 0.07 0.45 55.6 0.10 0.1 112.5 3.5 0.03	4.5	3.09	7.7	940.2	30.4	0.26	0.12
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6.7	2.27	3.4	611.3	19.4	0.18	0.18
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8.8	1.46	6.3	828.3	26.6	0.24	0.13
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10.9	0.97	1.7	428.0	13.5	0.13	0.25
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14.9	0.94	2.4	503.6	15.9	0.16	0.20
20.6 0.53 1.4 373.9 11.8 0.12 0.25 24.1 0.46 1.3 349.5 11.0 0.12 0.27 29.1 0.36 0.6 234.6 7.4 0.08 0.39 35.34 0.26 0.5 225.9 7.1 0.08 0.41 39.8 0.20 0.5 225.9 7.1 0.08 0.41 43.7 0.15 0.4 208.2 6.5 0.07 0.45 55.6 0.10 0.1 112.5 3.5 0.03 0.91 MOπ. % η, η, η, η', G', Πα·c [4] Πα·c Πα Πα·c 1πα·c tg δ τ _i , c 1.1 5.75 10.8 1127.1 36.8 0.31 0.10 3.4 3.03 9.2 1027.6 33.4 0.29 0.11 4.5 2.31 7.3 899.9 29.0 0.26 0.12 5.6 1.58 7.6 913.6 29.5 0	16.8	0.80	5.2	721.5	23.1	0.23	0.14
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18.2	0.66	2.7	515.8	16.3	0.17	0.19
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20.6	0.53	1.4	373.9	11.8	0.12	0.25
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	24.1	0.46	1.3	349.5	11.0	0.12	0.27
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	29.1	0.36	0.6	234.6	7.4	0.08	0.39
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	35.34	0.26	0.5	225.9	7.1	0.08	0.41
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	39.8	0.20	0.5	225.9	7.1	0.08	0.41
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	43.7	0.15	0.4	208.2	6.5	0.07	0.45
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	55.6	0.10	0.1	112.5	3.5	0.03	0.91
3.4 3.03 9.2 1027.6 33.4 0.29 0.11 4.5 2.31 7.3 899.9 29.0 0.26 0.12 5.6 1.58 7.6 913.6 29.5 0.26 0.12 6.7 1.44 8.7 971.2 31.6 0.29 0.11 8.9 1.30 3.4 600.7 19.1 0.18 0.17 9.7 1.34 1.8 434.4 13.7 0.13 0.23 11.1 1.38 1.9 444.9 14.0 0.14 0.22 13.3 1.33 3.4 582.2 18.5 0.19 0.17 15.4 1.27 6.2 776.8 25.1 0.26 0.12 17.7 1.07 5.1 698.9 22.4 0.23 0.13 20.9 0.86 5.4 711.8 22.9 0.24 0.13 24.2 0.42 1.0 303.6 9.5 0.11		η, Па·с [4]				tg δ	τ_i , c
4.5 2.31 7.3 899.9 29.0 0.26 0.12 5.6 1.58 7.6 913.6 29.5 0.26 0.12 6.7 1.44 8.7 971.2 31.6 0.29 0.11 8.9 1.30 3.4 600.7 19.1 0.18 0.17 9.7 1.34 1.8 434.4 13.7 0.13 0.23 11.1 1.38 1.9 444.9 14.0 0.14 0.22 13.3 1.33 3.4 582.2 18.5 0.19 0.17 15.4 1.27 6.2 776.8 25.1 0.26 0.12 17.7 1.07 5.1 698.9 22.4 0.23 0.13 20.9 0.86 5.4 711.8 22.9 0.24 0.13 24.2 0.42 1.0 303.6 9.5 0.11 0.29 28.3 0.31 3.7 574.4 18.3 0.20	1.1	5.75	10.8	1127.1	36.8	0.31	0.10
5.6 1.58 7.6 913.6 29.5 0.26 0.12 6.7 1.44 8.7 971.2 31.6 0.29 0.11 8.9 1.30 3.4 600.7 19.1 0.18 0.17 9.7 1.34 1.8 434.4 13.7 0.13 0.23 11.1 1.38 1.9 444.9 14.0 0.14 0.22 13.3 1.33 3.4 582.2 18.5 0.19 0.17 15.4 1.27 6.2 776.8 25.1 0.26 0.12 17.7 1.07 5.1 698.9 22.4 0.23 0.13 20.9 0.86 5.4 711.8 22.9 0.24 0.13 24.2 0.42 1.0 303.6 9.5 0.11 0.29 28.3 0.31 3.7 574.4 18.3 0.20 0.15 32.5 0.21 0.2 146.5 4.6 0.05	3.4	3.03	9.2	1027.6	33.4	0.29	0.11
6.7 1.44 8.7 971.2 31.6 0.29 0.11 8.9 1.30 3.4 600.7 19.1 0.18 0.17 9.7 1.34 1.8 434.4 13.7 0.13 0.23 11.1 1.38 1.9 444.9 14.0 0.14 0.22 13.3 1.33 3.4 582.2 18.5 0.19 0.17 15.4 1.27 6.2 776.8 25.1 0.26 0.12 17.7 1.07 5.1 698.9 22.4 0.23 0.13 20.9 0.86 5.4 711.8 22.9 0.24 0.13 24.2 0.42 1.0 303.6 9.5 0.11 0.29 28.3 0.31 3.7 574.4 18.3 0.20 0.15 32.5 0.21 0.2 146.5 4.6 0.05 0.60	4.5	2.31	7.3	899.9	29.0	0.26	0.12
8.9 1.30 3.4 600.7 19.1 0.18 0.17 9.7 1.34 1.8 434.4 13.7 0.13 0.23 11.1 1.38 1.9 444.9 14.0 0.14 0.22 13.3 1.33 3.4 582.2 18.5 0.19 0.17 15.4 1.27 6.2 776.8 25.1 0.26 0.12 17.7 1.07 5.1 698.9 22.4 0.23 0.13 20.9 0.86 5.4 711.8 22.9 0.24 0.13 24.2 0.42 1.0 303.6 9.5 0.11 0.29 28.3 0.31 3.7 574.4 18.3 0.20 0.15 32.5 0.21 0.2 146.5 4.6 0.05 0.60	5.6	1.58	7.6	913.6	29.5	0.26	0.12
9.7 1.34 1.8 434.4 13.7 0.13 0.23 11.1 1.38 1.9 444.9 14.0 0.14 0.22 13.3 1.33 3.4 582.2 18.5 0.19 0.17 15.4 1.27 6.2 776.8 25.1 0.26 0.12 17.7 1.07 5.1 698.9 22.4 0.23 0.13 20.9 0.86 5.4 711.8 22.9 0.24 0.13 24.2 0.42 1.0 303.6 9.5 0.11 0.29 28.3 0.31 3.7 574.4 18.3 0.20 0.15 32.5 0.21 0.2 146.5 4.6 0.05 0.60	6.7	1.44	8.7	971.2	31.6	0.29	0.11
11.1 1.38 1.9 444.9 14.0 0.14 0.22 13.3 1.33 3.4 582.2 18.5 0.19 0.17 15.4 1.27 6.2 776.8 25.1 0.26 0.12 17.7 1.07 5.1 698.9 22.4 0.23 0.13 20.9 0.86 5.4 711.8 22.9 0.24 0.13 24.2 0.42 1.0 303.6 9.5 0.11 0.29 28.3 0.31 3.7 574.4 18.3 0.20 0.15 32.5 0.21 0.2 146.5 4.6 0.05 0.60	8.9	1.30	3.4	600.7	19.1	0.18	0.17
13.3 1.33 3.4 582.2 18.5 0.19 0.17 15.4 1.27 6.2 776.8 25.1 0.26 0.12 17.7 1.07 5.1 698.9 22.4 0.23 0.13 20.9 0.86 5.4 711.8 22.9 0.24 0.13 24.2 0.42 1.0 303.6 9.5 0.11 0.29 28.3 0.31 3.7 574.4 18.3 0.20 0.15 32.5 0.21 0.2 146.5 4.6 0.05 0.60	9.7	1.34	1.8	434.4	13.7	0.13	0.23
15.4 1.27 6.2 776.8 25.1 0.26 0.12 17.7 1.07 5.1 698.9 22.4 0.23 0.13 20.9 0.86 5.4 711.8 22.9 0.24 0.13 24.2 0.42 1.0 303.6 9.5 0.11 0.29 28.3 0.31 3.7 574.4 18.3 0.20 0.15 32.5 0.21 0.2 146.5 4.6 0.05 0.60	11.1	1.38	1.9	444.9	444.9 14.0		0.22
17.7 1.07 5.1 698.9 22.4 0.23 0.13 20.9 0.86 5.4 711.8 22.9 0.24 0.13 24.2 0.42 1.0 303.6 9.5 0.11 0.29 28.3 0.31 3.7 574.4 18.3 0.20 0.15 32.5 0.21 0.2 146.5 4.6 0.05 0.60	13.3	1.33	3.4	582.2	582.2 18.5		0.17
20.9 0.86 5.4 711.8 22.9 0.24 0.13 24.2 0.42 1.0 303.6 9.5 0.11 0.29 28.3 0.31 3.7 574.4 18.3 0.20 0.15 32.5 0.21 0.2 146.5 4.6 0.05 0.60							
24.2 0.42 1.0 303.6 9.5 0.11 0.29 28.3 0.31 3.7 574.4 18.3 0.20 0.15 32.5 0.21 0.2 146.5 4.6 0.05 0.60	15.4	1.27	6.2	776.8	25.1	0.26	0.12
28.3 0.31 3.7 574.4 18.3 0.20 0.15 32.5 0.21 0.2 146.5 4.6 0.05 0.60							1
32.5 0.21 0.2 146.5 4.6 0.05 0.60	17.7	1.07	5.1	698.9	22.4	0.23	0.13
	17.7 20.9	1.07 0.86	5.1 5.4	698.9 711.8	22.4 22.9	0.23 0.24	0.13 0.13
37.7 0.10 0.1 104.2 3.3 0.04 0.85	17.7 20.9 24.2	1.07 0.86 0.42	5.1 5.4 1.0	698.9 711.8 303.6	22.4 22.9 9.5	0.23 0.24 0.11	0.13 0.13 0.29
	17.7 20.9 24.2 28.3	1.07 0.86 0.42 0.31	5.1 5.4 1.0 3.7	698.9 711.8 303.6 574.4	22.4 22.9 9.5 18.3	0.23 0.24 0.11 0.20	0.13 0.13 0.29 0.15

сдвиговой вязкости у литий- и натрийборатных расплавов наблюдается в области ~ 10 мол. % Me_2O , тогда как у калий- и цезийборатных расплавов — в области ~ 3 мол. % Me_2O . Предполагается, что в этом низкоконцентрационном интервале в щелочноборатных расплавах происходит образование полиэдров BO_4 , которые входят в состав некольцевых полиборатных групп (НК). Это приводит к «разрыхлению» борокислородной сетки

Таблица 2. Вязкоупругие характеристики расплавов $K_2O-B_2O_3$ и $Cs_2O-B_2O_3$ при $T=900-1600 \mathrm{K}$

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1	1	T	î	ı
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	мол. $\%$ $\mathrm{K_2O}$	η, Па·с [4]	η΄, Πa·c	<i>G</i> ′, Па	η*, Па∙с	tg δ	τ_i , c
1.5 1.4 6.9 29.1 904.9 0.25 0.13 2.2 1.1 11.6 38.2 1163.1 0.32 0.10 3.0 0.7 5.1 24.5 766.8 0.21 0.15 3.7 0.5 4.0 21.5 674.9 0.19 0.16 4.5 0.4 6.3 26.5 824.1 0.24 0.13 5.3 1.4 3.6 19.7 620.0 0.18 0.17 6.0 1.5 6.1 26.1 811.3 0.24 0.13 7.6 1.6 5.5 24.6 767.6 0.23 0.14 10.7 1.5 5.5 24.2 753.8 0.24 0.13 14.8 1.0 1.9 13.7 433.6 0.14 0.22 17.2 0.9 4.0 19.9 625.0 0.21 0.15 24.1 0.4 2.1 13.9 440.7 0.15 0.21<	0.0	11.4	12.3	40.5	1234.8	0.32	0.10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.7	3.7	12.4	39.9	1214.5	0.33	0.10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.5	1.4	6.9	29.1	904.9	0.25	0.13
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.2	1.1	11.6	38.2	1163.1	0.32	0.10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.0	0.7	5.1	24.5	766.8	0.21	0.15
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.7	0.5	4.0	21.5	674.9	0.19	0.16
6.0 1.5 6.1 26.1 811.3 0.24 0.13 7.6 1.6 5.5 24.6 767.6 0.23 0.14 10.7 1.5 5.5 24.2 753.8 0.24 0.13 14.8 1.0 1.9 13.7 433.6 0.14 0.22 17.2 0.9 4.0 19.9 625.0 0.21 0.15 24.1 0.4 2.1 13.9 440.7 0.15 0.21 28.5 0.2 2.1 13.8 437.5 0.15 0.21 MOD. % CS ₂ O Πα·c [19] Πα·c Πα Πα·c tg δ τ _t , c 0.3 12.6 9.5 35.3 1086.7 0.28 0.11 0.8 12.4 11.2 37.3 1138.2 0.31 0.10 1.0 11.2 12.2 38.9 1183.7 0.33 0.10 1.3 6.3 8.3 31.5 972.8 0.2	4.5	0.4	6.3	26.5	824.1	0.24	0.13
7.6 1.6 5.5 24.6 767.6 0.23 0.14 10.7 1.5 5.5 24.2 753.8 0.24 0.13 14.8 1.0 1.9 13.7 433.6 0.14 0.22 17.2 0.9 4.0 19.9 625.0 0.21 0.15 24.1 0.4 2.1 13.9 440.7 0.15 0.21 28.5 0.2 2.1 13.8 437.5 0.15 0.21 MOJ. % η , η' , G' , Π^* , G' , Π^* , Π^* , $tg \delta$ τ_p c 0.3 12.6 9.5 35.3 1086.7 0.28 0.11 0.8 12.4 11.2 37.3 1138.2 0.31 0.10 1.0 11.2 12.2 38.9 1183.7 0.33 0.10 1.3 6.3 8.3 31.5 972.8 0.27 0.11 1.6 5.7 8.7 32.2 992.9 0.28 0.11	5.3	1.4	3.6	19.7	620.0	0.18	0.17
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6.0	1.5	6.1	26.1	811.3	0.24	0.13
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7.6	1.6	5.5	24.6	767.6	0.23	0.14
17.2 0.9 4.0 19.9 625.0 0.21 0.15 24.1 0.4 2.1 13.9 440.7 0.15 0.21 28.5 0.2 2.1 13.8 437.5 0.15 0.21 MOJ. % CS ₂ O η, η η΄, Πα·ς [19] ηα·ς Πα·ς Πα·ς Πα·ς 19 ηπα·ς Πα·ς 19 ηπα·ς 19	10.7	1.5	5.5	24.2	753.8	0.24	0.13
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14.8	1.0	1.9	13.7	433.6	0.14	0.22
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17.2	0.9	4.0	19.9	625.0	0.21	0.15
MOπ. % Cs_2O $η$, $Πa·c$ [19] $η$, $Πa·c$ $η$, $Πa·c$ $η$,	24.1	0.4	2.1	13.9	440.7	0.15	0.21
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	28.5	0.2	2.1	13.8	437.5	0.15	0.21
0.8 12.4 11.2 37.3 1138.2 0.31 0.10 1.0 11.2 12.2 38.9 1183.7 0.33 0.10 1.3 6.3 8.3 31.5 972.8 0.27 0.11 1.6 5.7 8.7 32.2 992.9 0.28 0.11 1.8 5.6 6.8 28.2 874.9 0.25 0.13 2.1 5.5 6.1 26.4 820.8 0.24 0.13 2.7 5.7 3.3 19.2 604.1 0.18 0.18 3.3 6.3 7.7 29.3 905.0 0.27 0.11 3.9 6.4 2.0 14.3 453.6 0.14 0.22 5.5 6.0 1.9 13.8 437.4 0.14 0.22 5.5 5.9 5.5 23.4 729.3 0.24 0.13 7.6 5.6 4.2 20.3 633.7 0.21 0.15 </td <td></td> <td>η, Па·с [19]</td> <td></td> <td></td> <td></td> <td>tg δ</td> <td>τ_i, c</td>		η, Па·с [19]				tg δ	τ_i , c
1.0 11.2 12.2 38.9 1183.7 0.33 0.10 1.3 6.3 8.3 31.5 972.8 0.27 0.11 1.6 5.7 8.7 32.2 992.9 0.28 0.11 1.8 5.6 6.8 28.2 874.9 0.25 0.13 2.1 5.5 6.1 26.4 820.8 0.24 0.13 2.7 5.7 3.3 19.2 604.1 0.18 0.18 3.3 6.3 7.7 29.3 905.0 0.27 0.11 3.9 6.4 2.0 14.3 453.6 0.14 0.22 5.5 6.0 1.9 13.8 437.4 0.14 0.22 5.5 5.9 5.5 23.4 729.3 0.24 0.13 7.6 5.6 4.2 20.3 633.7 0.21 0.15 9.6 3.2 5.4 22.3 693.4 0.25 0.13	0.3	12.6	9.5	35.3	1086.7	0.28	0.11
1.3 6.3 8.3 31.5 972.8 0.27 0.11 1.6 5.7 8.7 32.2 992.9 0.28 0.11 1.8 5.6 6.8 28.2 874.9 0.25 0.13 2.1 5.5 6.1 26.4 820.8 0.24 0.13 2.7 5.7 3.3 19.2 604.1 0.18 0.18 3.3 6.3 7.7 29.3 905.0 0.27 0.11 3.9 6.4 2.0 14.3 453.6 0.14 0.22 5.5 6.0 1.9 13.8 437.4 0.14 0.22 5.5 5.9 5.5 23.4 729.3 0.24 0.13 7.6 5.6 4.2 20.3 633.7 0.21 0.15 9.6 3.2 5.4 22.3 693.4 0.25 0.13 11.7 1.2 5.0 20.8 645.2 0.25 0.13	0.8	12.4	11.2	37.3	1138.2	0.31	0.10
1.6 5.7 8.7 32.2 992.9 0.28 0.11 1.8 5.6 6.8 28.2 874.9 0.25 0.13 2.1 5.5 6.1 26.4 820.8 0.24 0.13 2.7 5.7 3.3 19.2 604.1 0.18 0.18 3.3 6.3 7.7 29.3 905.0 0.27 0.11 3.9 6.4 2.0 14.3 453.6 0.14 0.22 5.5 6.0 1.9 13.8 437.4 0.14 0.22 6.5 5.9 5.5 23.4 729.3 0.24 0.13 7.6 5.6 4.2 20.3 633.7 0.21 0.15 9.6 3.2 5.4 22.3 693.4 0.25 0.13 11.7 1.2 5.0 20.8 645.2 0.25 0.13	1.0	11.2	12.2	38.9	1183.7	0.33	0.10
1.8 5.6 6.8 28.2 874.9 0.25 0.13 2.1 5.5 6.1 26.4 820.8 0.24 0.13 2.7 5.7 3.3 19.2 604.1 0.18 0.18 3.3 6.3 7.7 29.3 905.0 0.27 0.11 3.9 6.4 2.0 14.3 453.6 0.14 0.22 5.5 6.0 1.9 13.8 437.4 0.14 0.22 6.5 5.9 5.5 23.4 729.3 0.24 0.13 7.6 5.6 4.2 20.3 633.7 0.21 0.15 9.6 3.2 5.4 22.3 693.4 0.25 0.13 11.7 1.2 5.0 20.8 645.2 0.25 0.13	1.3	6.3	8.3	31.5	972.8	0.27	0.11
2.1 5.5 6.1 26.4 820.8 0.24 0.13 2.7 5.7 3.3 19.2 604.1 0.18 0.18 3.3 6.3 7.7 29.3 905.0 0.27 0.11 3.9 6.4 2.0 14.3 453.6 0.14 0.22 5.5 6.0 1.9 13.8 437.4 0.14 0.22 6.5 5.9 5.5 23.4 729.3 0.24 0.13 7.6 5.6 4.2 20.3 633.7 0.21 0.15 9.6 3.2 5.4 22.3 693.4 0.25 0.13 11.7 1.2 5.0 20.8 645.2 0.25 0.13	1.6	5.7	8.7	32.2	992.9	0.28	0.11
2.7 5.7 3.3 19.2 604.1 0.18 0.18 3.3 6.3 7.7 29.3 905.0 0.27 0.11 3.9 6.4 2.0 14.3 453.6 0.14 0.22 5.5 6.0 1.9 13.8 437.4 0.14 0.22 6.5 5.9 5.5 23.4 729.3 0.24 0.13 7.6 5.6 4.2 20.3 633.7 0.21 0.15 9.6 3.2 5.4 22.3 693.4 0.25 0.13 11.7 1.2 5.0 20.8 645.2 0.25 0.13	1.8	5.6	6.8	28.2	874.9	0.25	0.13
3.3 6.3 7.7 29.3 905.0 0.27 0.11 3.9 6.4 2.0 14.3 453.6 0.14 0.22 5.5 6.0 1.9 13.8 437.4 0.14 0.22 6.5 5.9 5.5 23.4 729.3 0.24 0.13 7.6 5.6 4.2 20.3 633.7 0.21 0.15 9.6 3.2 5.4 22.3 693.4 0.25 0.13 11.7 1.2 5.0 20.8 645.2 0.25 0.13	2.1	5.5	6.1	26.4	820.8	0.24	0.13
3.9 6.4 2.0 14.3 453.6 0.14 0.22 5.5 6.0 1.9 13.8 437.4 0.14 0.22 6.5 5.9 5.5 23.4 729.3 0.24 0.13 7.6 5.6 4.2 20.3 633.7 0.21 0.15 9.6 3.2 5.4 22.3 693.4 0.25 0.13 11.7 1.2 5.0 20.8 645.2 0.25 0.13	2.7	5.7	3.3	19.2	604.1	0.18	0.18
5.5 6.0 1.9 13.8 437.4 0.14 0.22 6.5 5.9 5.5 23.4 729.3 0.24 0.13 7.6 5.6 4.2 20.3 633.7 0.21 0.15 9.6 3.2 5.4 22.3 693.4 0.25 0.13 11.7 1.2 5.0 20.8 645.2 0.25 0.13	3.3	6.3	7.7	29.3	905.0	0.27	0.11
6.5 5.9 5.5 23.4 729.3 0.24 0.13 7.6 5.6 4.2 20.3 633.7 0.21 0.15 9.6 3.2 5.4 22.3 693.4 0.25 0.13 11.7 1.2 5.0 20.8 645.2 0.25 0.13	3.9	6.4	2.0	14.3	453.6	0.14	0.22
7.6 5.6 4.2 20.3 633.7 0.21 0.15 9.6 3.2 5.4 22.3 693.4 0.25 0.13 11.7 1.2 5.0 20.8 645.2 0.25 0.13	5.5	6.0	1.9	13.8	437.4	0.14	0.22
9.6 3.2 5.4 22.3 693.4 0.25 0.13 11.7 1.2 5.0 20.8 645.2 0.25 0.13	6.5	5.9	5.5	23.4	729.3	0.24	0.13
11.7 1.2 5.0 20.8 645.2 0.25 0.13	7.6	5.6	4.2	20.3	633.7	0.21	0.15
	9.6	3.2	5.4	22.3	693.4	0.25	0.13
15.2 0.8 2.1 12.8 404.3 0.16 0.19	11.7	1.2	5.0	20.8	645.2	0.25	0.13
	15.2	0.8	2.1	12.8	404.3	0.16	0.19

расплава. Следствием этого разрыхления является снижение сдвиговой вязкости расплава. Максимальные значения сдвиговой вязкости в ряду расплавов LiB \rightarrow NaB \rightarrow KB \rightarrow CsB приходятся соответственно на следующие концентрационные интервалы: 6–20, 6–15, 4–10, 2–8 мол. % Me₂O (Me = Li, Na, K, Cs). За пределами этих интервалов снижение вязкости вызвано распадом борокислородной сетки расплава вплоть до образования базовых тригональных групп. Постепенный характер изменения сдвиговой вязкости в отмеченных выше


Рис. 2. Зависимости динамической вязкости (η '), сдвиговой вязкости (η) и модуля упругости (G') от состава расплавов x Me₂O–B₂O₃ (Me = Li, Na, K, Cs).

интервалах связан с изменением структуры ближнего порядка, при котором происходят конфигурационные изменения и переключения атомов кислорода мостиковых связей. Как известно, с увеличением концентрации оксида щелочного металла в щелочноборатных расплавах образуется следующий ряд надструктурных единиц [25, 26]:

$$B_3O_3\emptyset_4^{\,-} \to B_5O_6\,\emptyset_4^{\,-} \to B_8O_{10}\emptyset_6 \to B_4O_5\,\emptyset_4^{\,2-}\,(\emptyset-\text{мостиковый кислород}),\ \ (5)$$

(три- \rightarrow пента- \rightarrow тетра- \rightarrow диборатные группы), в которых энергия переключения мостиковых связей кислорода не сильно отличается друг от друга. Это приводит к монотонной зависимости сдвиговой вязкости от состава (рис.2, табл. 1, 2). Необходимо отметить, что динамическая вязкость η' отличается от сдвиговой вязкости η . Это связано с тем, что изменение скорости деформации приводит к проявлению у расплавов упругих свойств.

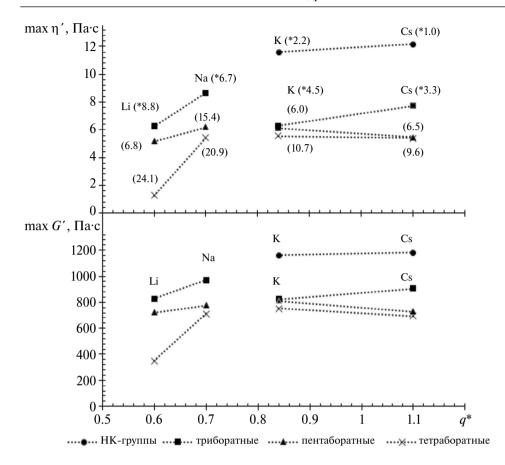
Периодический сдвиговый процесс может быть описан двумя компонентами: динамической вязкостью (η') и модулем сдвига (G'). На графиках зависимости η' и G' от состава наблюдаются экстремальные значения этих величин. Предположено, что эти значения коррелируют с присутствием в борокислородной сетке кольцевых полиборатных групп, соответствующих приведенному выше ряду (5). Концентрационные границы динамической вязкости имеют выраженный характер и имеют следующие значения, отвечающие ряду (5) (в мол. %), соответственно, для литий-, натрий-, калий- и цезийборатных расплавов: 6–30, 10–32, 5–25, 3–15. Отнесение сделано на основе данных KP-спектроскопии [25]. При

Рис. 3. Зависимости тангенса угла механических потерь и времени релаксации от состава расплава $x \text{ Me}_2\text{O}-\text{B}_2\text{O}_3$ (Me =Li, Na, K, Cs).

низкочастотной деформации вязкоупругие свойства борокислородной сетки проявляются в виде ряда экстремальных характеристик, располагающихся выше, чем сдвиговая вязкость (см. рис. 2 и 3). Отметим, что число Деборы (DN), которое определяется как отношение времени релаксации к времени наблюдения (больше 1). Это значит, что расплав можно рассматривать как твердое тело. Значения динамической вязкости и модуля упругости при одинаковых типах химической связи зависят от размера надструктурных единиц расплава. Чем больше число связей В—О—В в группировке, тем больше параметры вязкоупругих свойств этих групп.

Выделяются две особенности вязкоупругих свойств щелочноборатных расплавов, связанных с природой катиона щелочного металла. Первая состоит в том, что, как предполагается, в первой области образуются некольцевые группы, состоящие преимущественно из базовых единиц BO_3 и тетраэдров BO_4 , которым отвечает различное число пиков на зависимости η и G от состава. Так в расплавах LiB и NaB наблюдается только один пик, а в KB и CsB — два. Это различие можно объяснить следующим образом: взаимодействие катионов щелочного металла с полиэдром BO_4 зависит от ионного потенциала (q/r), где q — заряд катиона, r — радиус. В ряду расплавов LiB \rightarrow NaB \rightarrow KB \rightarrow CsB снижение ионного потенциала уменьшает взаимодействие с некольцевыми группами. Это приводит к увеличению вязкоупругих параметров сетки расплава. Дополнительный пик, который наблюдается на зависимостях η и G от состава в расплавах KB и CsB связан с гидролизом этих систем. Это значит, что часть некольцевых групп содержат оксигидратные группы. Вторая особенность вязкоупругих свойств расплава связана с размерами катионов.

Me ⁺	мол. % Me ₂ O	q^*	КЧ	η΄, Па·с	<i>G′</i> , Па	tg δ	τ_i ,c
Li ⁺	8.8	0.6	4	6.3	828.3	0.24	0.13
	16.8			5.2	721.5	0.23	0.14
	24.1			1.3	351.9	0.12	0.27
	6.7		6 8	8.7	971.2	0.29	0.11
Na ⁺	15.4	0.7		6.2	776.8	0.26	0.12
	20.9			5.4	711.8	0.24	0.13
	28.3			3.7	574.4	0.2	0.15
	2.2	0.84	8 10	11.6	1163.1	0.32	0.10
K^+	4.5			6.3	824.1	0.24	0.13
	6.04			6.1	811.3	0.24	0.13
	10.7			5.5	753.8	0.24	0.13
	17.2			4.0	625.0	0.21	0.15
Cs ⁺	1.02	1.1	10 12	12.2	1183.7	0.33	0.10
	3.3			7.7	905.0	0.27	0.11
	6.5			5.4	729.3	0.24	0.13
	9.6			5.4	693.4	0.25	0.13


Таблица 3. Эффективные заряды и координационные числа щелочноборатных расплавов $Me_2O-B_2O_3$ (Me=Li, Na, K, Cs)

Крупные катионы, такие как калий и цезий, с трудом входят в борокислородную сетку расплава. Число доступных позиций, которые могут занять эти катионы, ограничено. В расплавах КВ и СsВ это приводит к разрушению мостиковых кислородных связей и появлению немостиковых кислородов [27]. В результате граница образования полиборатных групп, отвечающих ряду (5), смещается в область более низких концентраций по оксиду щелочного металла.

С целью более детальной оценки влияния природы щелочного металла на свойства боратных расплавов удобно рассмотреть зависимость только экстремальных значений вязкоупругих характеристик от координационных чисел катионов и их эффективных зарядов (q^*). Эффективный заряд катиона определяет степень ионности связей Me-O, его значения получены на основе данных интегральных полос ИК-спектров щелочноборатных систем [28] и приведены в табл. 3.

Экстремальные значения динамической вязкости (η') и модуля упругости (G') отвечают максимальной концентрации групп ряда (5) на шкале концентраций. Эти группы формируют кластеры, в состав которых входят и катионы щелочных металлов. Зависимость экстремальных значений динамической вязкости и модуля упругости щелочноборатных расплавов от эффективного заряда катиона представлена на рис. 4.

Стоит отметить, что высокая поляризуемость иона цезия вносит дополнительный вклад в дипольный момент, в результате вычисленный эффективный заряд иона цезия становится больше. Из табл. 3 видно, что значения экстремальных характеристик η' и G', связанных с надструктурными единицами расплава, смещаются а область более низких концентраций, при этом происходит увеличение этих параметров в парах LiB \rightarrow NaB и KB \rightarrow CsB. Из табл. 3 также видно, что более

Рис. 4. Зависимость динамической вязкости и модуля упругости щелочноборатных расплавов от эффективного заряда катиона. В скобках указаны концентрации щелочных оксидов (мол. %), при которых получены значения динамической вязкости и модуля упругости.

крупные катионы связаны с большим числом кислородных атомов. Это блокирует конфигурационные перестройки, необходимые для переключения мостиковых связей. Вследствие этого экстремальные значения параметров η' и G' начинают формироваться при более низких концентрациях оксидов щелочных металлов.

Необходимо отметить, что в расплавах $KB \to CsB$ наблюдается снижение η' и G' в области ~ 10 мол. % Me_2O (рис. 2) Из данных KP-спектроскопии [29] известно, что при этих составах в расплаве CsB появляются немостиковые кислороды, которые снижают связность сетки расплавов. Это приводит к снижению вязкоупругих параметров расплава CsB по отношению к KB. В расплаве NaB немостиковый кислород в заметных количествах появляется при концентрации ~ 20 мол. % Me_2O . Поэтому снижения параметров η' и G' в приведенном концентрационном интервале (0—20 мол. %) у расплавов LiB и NaB не наблюдается.

Кроме η' и G' особенности вязкоупругих свойств характеризуют следующие два параметра: тангенс угла механических потерь (tg δ) и период релаксации системы от неравновесного состояния к равновесному (τ _i). Чем больше тангенс угла

механических потерь, тем меньше время релаксации (табл. 1, 2 и рис. 3). Тангенс угла механических потерь рассчитывали по формуле

$$tg\delta = \frac{G''}{G'}. (6)$$

Период релаксации обычно приравнивают к времени оседлой жизни структурных единиц. Большее время релаксации указывает на большую группу взаимодействующих атомов, обладающих значительной сдвиговой упругостью. Время релаксации рассчитывалось, с учетом частоты эксперимента, следующим образом:

$$\tau_i = \frac{1}{\lg \delta \cdot \omega} \quad . \tag{7}$$

Как известно, период релаксации τ_i определяет время жизни отдельных частиц. По данным молекулярной динамики щелочноборатных расплавов [30], время оседлого существования отдельных атомов оценивается как 10^{-11} с. Π ериод низкочастотной вязкоупругой релаксации щелочноборатных расплавов составляет доли секунды. Это указывает на образование в расплавах крупных кольцевых групп, образующих динамические кластеры с большим временем жизни. Это позволяет заключить, что вязкоупругая релаксация в расплавах проходит посредством диффузионно-колебательного обмена возбужденных атомов кластера с некольцевыми группами расплава, представляющими неупорядоченную часть сетки расплава. Такое объяснение будет соответствовать модели сильновязкой жидкости, предложенной Исаковичем и Чабаном [31]. По этой модели жидкость рассматривается как микронеоднородная среда, состоящая из упорядоченных микрообластей – кластеров, расположенных в рыхло упакованной матрице. В нашем случае кластеры, собранные из кольцевых групп, представляют собой упорядоченные фрагменты борокислородной сетки, тогда как некольцевые группы, собранные из «свободных» ВО₄, тригональных единиц BO_3 , метаборатных единиц $BØ_2O^-$, пиро- и ортоборатных групп, являются неупорядоченными фрагментами сетки расплава. В результате диффузионный обмен происходит между упорядоченными и «неупорядоченными» компонентами расплава. Этот обмен происходит посредством более подвижных ионов шелочных металлов.

Стоит отметить, что в ряду расплавов LiB \rightarrow NaB \rightarrow KB \rightarrow CsB тангенс угла потерь возрастает (tg δ) (табл. 3). Известно, что в этом ряду катион-модификатор взаимодействует с большим числом кислородных атомов — это является причиной увеличения размеров образующихся в системе кластеров, несмотря на то, что по данным KP-спектроскопии [25, 26, 29] концентрация полиэдров BO₄ в этом ряду снижается.

ЗАКЛЮЧЕНИЕ

Получены результаты анализа динамических вязкоупругих характеристик щелочноборатных расплавов. Показано влияние природы катиона щелочного металла на вязкоупругие свойства расплавов. Установлено, что вязкоупругие характеристики (η' , G', tg δ , τ_i) связаны с надструктурными единицами расплавов, которые образуют кластеры, в состав которых входят и ионы щелочных металлов.

Найдено, что низкочастотная вязкоупругая релаксация составляет $\sim 10^{-1}$ с. Релаксационный процесс объяснен диффузионным обменом возбужденных атомов между кластерами и «фоновыми» некольцевыми группами расплавов. Показано, что структурные единицы расплавов не успевают реагировать на внешние периодические возмущения, что приводит к появлению упругих свойств расплава.

ФИНАНСИРОВАНИЕ

Работа выполнена в рамках госзадания Института металлургии УрО РАН.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы данной работы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Воларович М.П., Толстой Д.М. Исследование внутреннего трения двойной системы $Na_2B_4O_7$ – B_2O_3 в расплавленном состоянии // Изв. Акад. наук СССР. 1930. № 9. С. 897–906.
- 2. Shartsis L., Capps S.W., Spinner S. Viscosity and Electrical Resitivity of Molten Alkali Borates // Journal of the American Ceramic Society. 1953. V. 36. № 10. P. 319–326.
- 3. *Li P.-Ch.*, *Ghose A.C.*, *Su G.-J*. Viscosity Determination of Boron Oxide and Binary Borates // J. American Ceramic Society. 1962. V. 45. № 2. P. 83–88.
- Богданов В.Н., Михайлов И.Г., Немилов С.В. Изучение методом ультразвуковой спектроскопии и вискозиметрии структуры расплавленных стекол системы Na₂O−B₂O₃ // Акустический журнал. 1974. Т. XX. № 4. С. 511–517.
- Tandon S., Agrawal R.D., Kapoor M.L. Viscosity of Molten Na₂O−B₂O₃ Slags // J. American Ceramic Society. 1994. V. 77. № 4. P. 1032–1036.
- 6. *Kaiura G.H.*, *Toguri J.M.* The viscosity and structure of sodium borate melts // Physics and chemistry of glasses. 1976. V. 17. № 3. P. 62–69.
- 7. *Мусихин В.И., Кудряшов В.Н.* Строение и свойства металлургических расплавов. Свердловск: Ин-т металлургии УНЦ АН СССР, 1974. Т. 28. С. 91–96.
- 8. Liu H., Shen G., Wang X., Wei J.D. Viscosity and IR investigations in the Li₂O-B₂O₃ system // Progress in Crystal Growth and Characterization of Materials. 2000. V. 40. P. 235–241.
- 9. *Ota R., Soga N., Yogyo-Kyokai-Shi*. Viscosity of binary alkali borates // Journal of the Ceramic Society of Japan. 1983. V. 91. № 6. P. 265–271 (in Japanese).
- 10. *Nakashima K., Kawagoe T., Ookado T., Mori K.* Viscosity of binary borate and ternary borosilicate Melts // Proceedings of the 5th Intern. Conf. on Molten Slags, Fluxes and Salts, Sydney, Australia, Jan. 5–8, 1997. Warrendale: Iron and Steel Society, 1997. P. 215–221.
- 11. Воларович М.П., Фридман Р.С. Исследование вязкости системы $K_2B_40_7$ – B_20_3 в расплавленном состоянии // ЖФХ. 1937. Т. 9. № 2. С. 177–181.
- 12. *Matusita K., Watanabe T., Kamiya K., Sakka S.* Viscosities of Single and Mixed Alkali Borate Glasses // Phys. Chem Glasses. 1980. V. 21. P. 78–84.
- 13. Brosh I.E., Pelton A.D., Decterov S.A. A model to calculate the viscosity of silicate melts Part V: Borosilicate melts containing alkali metals // Int. J. of Mat. Res. 2012. V. 103. № 5. P. 537–550.
- 14. Coughanour L.W., Shartsis L., Shermer H.F. Viscosity, Density and Electrical Resistivity of Molten Alkaline-Earth Borate Glasses with 3 mol. % of Potassium Oxide // Journal of American Ceramic Society. 1958. V. 41. № 8. P. 324–329.

- Leedecke C.J., Clifton G.B. Viscous flow in binary borate melts // Matter Sci Res. 1978. V. 12. P. 413–426.
- 16. Li P.C., Anil C.Gh., Su G.-J. Viscosity of molten rubidium and caesium borates // Phys. Chem. Glasses. 1960. V. 1. № 6. P. 202–203.
- 17. Visser T.J.M., Stevels J.M. Rheological properties of boric oxide and alkali borate glasses // J. Non-Cryst. Solids. 1972. V. 7. P. 376–394.
- 18. Соловьев А.Н., Каплун А.Б. Вибрационный метод измерения вязкости жидкостей. Новосибирск: Наука, 1970. 140 с.
- 19. *Штенгельмейер С.В., Прусов В.А., Бочегов В.А.* Усовершенствование методики измерения вязкости вибрационным вискозиметром // Заводская лаборатория. 1985. Т. 51. № 9. С. 56—57.
- 20. Бэтчелор Дж. Введение в динамику жидкостей / Пер. с англ. М.: Мир, 1973.
- 21. Shartsis L., Capps W., Spinner S. Density and Expansivity of alkali borates and density characteristics of some other binary glasses // J. Am. Cer. Soc. 1953. V. 36. № 2. P. 35–43.
- 22. Li P-C., Anil C.Gh., Su G.-J. Letters to the Editor Density of molten boron oxide, rubidium and caesium borates // Phys. Chem. Glasses. 1960. V. 1. P. 198–200.
- 23. Кирсанов. Е.А., Матвеенко В.Н. Неньютоновское течение дисперсных, полимерных и жидкокристаллических систем: Структурный подход. М.: Техносфера, 2016. 379 с.
- 24. Демкин В.П., Мельничук С.В., Удути В.В., Тютрин И., Руденко Т.В., Криницына Д.Б. Определение вязкоупругих характеристик цельной крови на основе метода низкочастотной пьезотромбоэластографии // Известия высших учебных заведений. Физика. 2019. Т. 62. № 12. С. 55–62.
- 25. Осипов А.А., Осипова Л.М., Быков В.Н. Спектроскопия и структура щелочноборатных стекол и расплавов. Екатеринбург—Миасс: УрО РАН, 2009. 174 с.
- 26. *Konijnendijk W.L., Stevels J.M.* The structure of borate glasses studied by Raman scattering // J. Non-Cryst. Solids. 1975. V. 18. P. 307–331.
- 27. *Kamitsos E.I.* Modifying role of Alkali-metal Cations in Borate Glass Networks // J. Phys. Chem. 1989. V. 93. P. 1604–1611.
- 28. Kamitsos E.I. Cation-Network Interactions in Binary Alkali Metal Borate Glasses. A Far-Infrared Study // J. Phys. Chem. 1987. V. 91. P. 5807–5813.
- 29. *Ocunoв A.A.*, *Ocunoва Л.М.* Структура стекол и расплавов системы Cs2O—B2O3 по данным спектроскопии комбинационного рассеяния света http://i.uran.ru/webcab/system/files/journalspdf/fizika-i-himiya-stekla/fizika-i-himiya-stekla-2014-t.40-n-4/20144.pdf //Физика и Химия стекла. 2014. Т. 40. № 4. С. 521—534.
- 30. *Vegiri A., Varsamis C.-P. E., Kamitsos E.I.* Molecular dynamics investigation of mixed-alkali borate glasses: Short-range order structure and alkali-ion environments // Phys. Rev. B. 2009. V. 80. № 184202.
- 31. *Исакович М.А.*, *Чабан И.А*. Распространение волн в сильновязких жидкостях // ЖЭТФ. 1966. Т. 50. № 5. С. 1343—1362.