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В силу юридических ограничений либо ограничений, связанных с внутренней информационной 
политикой компаний, зачастую бизнес не доверяет конфиденциальную информацию публичным 
облачным провайдерам. Одним из механизмов, позволяющих обеспечить безопасность конфиден‑
циальных данных в облаках, является гомоморфное шифрование. Для проектирования решений, 
использующих нейронные сети, в данных условиях используются нейронные сети, сохраняющие 
конфиденциальность. Они эксплуатируют механизм гомоморфного шифрования, позволяя таким 
образом обеспечить безопасность коммерческой информации в облаке. Основным сдерживающим 
фактором использования нейронных сетей, сохраняющих конфиденциальность, является большая 
вычислительная и пространственная сложность алгоритма скалярного умножения, который явля‑
ется базовым для вычисления математической свертки. В работе предлагается алгоритм скалярного 
умножения, который позволяет уменьшить пространственную сложность c квадратичной до линей‑
ной, а также уменьшить время вычисления скалярного умножения в 1.38 раза.

Ключевые слова: матричные операции; искусственные нейронные сети; полностью гомоморфное 
шифрование; CKKS; TenSEAL; нейронные сети, сохраняющие конфиденциальность
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1. ВВЕДЕНИЕ
Методы искусственного интеллекта (ИИ) [1] 

набирают все большую популярность в  послед‑
ние годы. Если в  2000-х гг. ИИ зачастую инте‑
ресовались только исследовательские круги, то 
в последние десятилетия ИИ набирает популяр‑
ность во всех областях человеческой деятельно‑
сти. Если проанализировать научно-технические 
достижения, то можно отметить следующее. На 
рост популярности методов ИИ в большей степе‑
ни повлияло развитие децентрализованных вы‑
числительных архитектур, в том числе облачных 
вычислений, аппаратных ускорителей, а  также 
общая тенденция увеличения вычислительной 
мощности устройств. Методы ИИ сегодня при‑
меняются в производстве для повышения эффек‑

тивности автоматизации, в  медицине и  финан‑
совых структурах для анализа больших данных 
и т. д. С ростом популярности языковых моделей 
и запуском GPT с открытым исходным кодом ме‑
тоды ИИ охватили еще большее количество сфер 
человеческой деятельности [2].

Однако, как и в конце ХХ в., когда появился 
Интернет/Всемирная паутина, методы ИИ стали 
предметом различных дискуссий [3], как с точки 
зрения закона и  законотворчества, так и  с  точ‑
ки зрения безопасности данных. Задачи, решае‑
мые ИИ, как правило, сопряжены с обработкой 
больших объемов данных, а  в  случае с  теми же 
языковыми моделями – очень больших объемов 
данных. Большие данные [4] могут содержать 
информацию с  ограниченным доступом, на‑
пример, если ИИ используется компаниями для 
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обработки данных пользователей, в медицинской 
организации  – персональные данные пациен‑
тов, муниципальной/государственной  – данные 
граждан, внутренние документы, в  финансовых 
организациях  – данные клиентов, информация 
о счетах, биржевые котировки и т. д. Все вышепе‑
речисленные данные зачастую являются конфи‑
денциальными и охраняются законом, например, 
в Российской Федерации это Федеральный закон 
от  27  июля 2006 г. № 152-ФЗ “О  персональных 
данных”, который направлен на усиление кон‑
троля за обработкой и распространением личной 
информации граждан [5]. Если методы ИИ ис‑
пользуются внутри закрытой сети, вопросы безо‑
пасности можно решить стандартными методами, 
но создание и поддержка высокопроизводитель‑
ной закрытой сети требует больших вычисли‑
тельных ресурсов и  финансирования. Поэтому 
зачастую эффективнее обратиться к поставщику 
услуг облачных вычислений, что и  делает боль‑
шинство компаний. При аренде вычислительных 
мощностей сеть становится общедоступной, что 
создает риск компрометации конфиденциальных 
данных. Хотя поставщики облачных услуг гаран‑
тируют безопасность данных, хранящихся в  об‑
лаке, гарантировать безопасность вычислений 
на данный момент практически невозможно, по‑
скольку можно хранить данные в  зашифрован‑
ном виде, но не обрабатывать.

Таким образом, возникает проблема обра‑
ботки конфиденциальных данных ИИ в публич‑
ных сетях. В качестве решения проблемы можно 
рассмотреть такой криптографический прими‑
тив, как полностью гомоморфное шифрование 
(ПГШ) [6], он позволяет выполнять гомомор‑
фные операции сложения и  умножения над за‑
шифрованными данными. Этого достаточно, на‑
пример, для работы нейронных сетей (НС) [7], 
когда нам нужно обрабатывать входные данные 
с помощью уже обученных нейронов. В этой об‑
ласти также существуют нерешенные проблемы, 
например, с  аппроксимацией некоторых функ‑
ций активации. Кроме того, хотя для матриц опе‑
рации можно реализовать на основе сложения 
и умножения (вычитание реализуется как сложе‑
ние положительных и отрицательных чисел), из-
за особенностей схем ПГШ возникает большая 
избыточность данных, что приводит к неэффек‑
тивной работе конфиденциальных НС. Цель дан‑
ной работы – исследовать матричное умножение 
в контексте гомоморфного шифрования для по‑
вышения эффективности использования памяти, 
разработать новый алгоритм и протестировать его 
эффективность для конфиденциальных НС.

Работа организована следующим образом: 
в  разделе 2 рассматриваются конфиденциаль‑
ные НС и  методы их организации, в  разделе 3 
представлено исследование конфиденциального 
умножения матриц, в  разделе 4 анализируются 
полученные результаты на основе эксперимен‑
тального исследования, в  разделе 5 подводятся 
итоги проделанной работы и описываются буду‑
щие работы.

2. НЕЙРОННЫЕ СЕТИ, СОХРАНЯЮЩИЕ 
КОНФИДЕНЦИАЛЬНОСТЬ

2.1. Искусственная нейронная сеть
Математическая модель искусственных ней‑

ронных сетей представляет собой линейную ком‑
позицию взаимосвязанных нейронов с нелиней‑
ными функциями активации (рис. 1).

Входной слой обрабатывает входные данные, 
скрытый слой выполняет вычисления, а  выход‑
ной слой отвечает за выходную информацию. 
Искусственная НС, как и  биологическая НС, 
работает посредством активации нейронов, т. е., 
когда значение внутри нейрона достигает функ‑
ции активации, следующему нейрону передаются 
ее значение. Каждый нейрон имеет свое базовое 
значение (вес). Тогда состояние нейрона S можно 
описать как

	 S x w
i

n

i i=
=
∑

0
,

где xi – значение i-го входа нейрона; wi – вес i-го 
входа; n – количество входов нейрона. Передача 
значений следующему нейрону осуществляется 
посредством функции активации:
	 Y = f (S ),
где f (S ) – функция активации. Например, сигмои‑
дальная функция активации [8], определяется как

Input layer Hidden layer Output layer

Рис. 1. Модель искусственной нейронной сети.
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	 f S
e aS( ) =

+ −
1

1
�. 	 (1)

С  математической точки зрения, НС  – это 
многопараметрическая задача нелинейной опти‑
мизации, где веса нейронов скрытого слоя пред‑
ставляют собой параметры, а нейроны выходного 
слоя – ограничения. Чтобы нейронная сеть рабо‑
тала правильно, ее нужно обучить. Обучение про‑
исходит путем изменения внутренних значений 
весов нейронов. Существует несколько способов 
обучения, как с учителем, так и без него. Самый 
популярный способ обучения с  учителем  – ми‑
нимизация ошибок. На основе этого типа обуче‑
ния строятся сети с обратным распространением, 
которые используются для поиска закономерно‑
стей, прогнозирования и  качественного анали‑
за. Анализируя рис. 1, можно заметить, что если 
ввести операцию умножения матриц, то мож‑
но повысить эффективность обработки данных, 
как это и делается в большинстве случаев. Чтобы 
строить НС, сохраняющие конфиденциальность, 
необходимо ввести понятие криптографического 
примитива ПГШ.

2.2. Полностью гомоморфное шифрование 
и схема CKKS

Полностью гомоморфное шифрование 
(ПГШ)  – криптографический примитив, раз‑
вивающий идеи гомоморфного шифрования 
(ГШ). ГШ позволяет выполнять гомоморфное 
сложение или гомоморфное умножение над за‑
шифрованным текстом. Примерами ГШ явля‑
ются асимметричные шифры, такие как RSA [9], 
ElGamal [10] и др. Криптографы еще в 1980-х гг. 
предполагали, что полностью гомоморфное 
шифрование, когда шифр позволяет выполнять 
и  гомоморфное сложение, и  гомоморфное ум‑
ножение, возможно. Первая схема ПГШ была 
представлена Джентри в  его работе 2009  г. [6]. 
Однако эта схема не была эффективной и обра‑
батывала двоичные биты с помощью логических 
операций довольно долго (по  сравнению с  со‑
временными схемами), кроме того, схема име‑
ла большие ограничения на количество допу‑
стимых операций (количество операций, после 
которых сообщение может быть восстановлено). 
За следующие 15 лет сам Джентри [11–13] и его 
последователи [14–17] разработали новые схемы 
ПГШ, которые работают с целыми числами, вы‑
полняются быстрее и ослабляют ограничения на 
вид и количество операций.

Следующим шагом в истории ПГШ стала схе‑
ма CKKS (первоначально HEaaN), которая по‑
зволяет обрабатывать рациональные числа [18]. 

CKKS  – это система гомоморфного шифрова‑
ния, предназначенная для эффективного выпол‑
нения приближенных арифметических операций 
над зашифрованными данными. Она идеально 
подходит для вычислений с вещественными или 
комплексными числами над полем C N/2. Про‑
странство открытых текстов и  пространство 
шифротекстов имеют одну и ту же область

	 Z X XQ
N  ( )+ 1 ,

где N – чаще всего степень двойки.

Пакетное кодирование C Z X X
N

Q
N2 1↔   +( ) 

отображает массив комплексных чисел в много
член со свойством: decode encode m encode m m m1 2 1 2( )⊗ ( )( )≈ 

decode encode m encode m m m1 2 1 2( )⊗ ( )( )≈  , где ⊗ – покомпонентное умножение, 
а  – негациклическая свертка.

Схема CKKS работает по стандарту [19], кото‑
рый содержит рекомендуемые параметры для 
128-битных ключей ГШ троичной формы 
s u

N
∈ −{ }1 0 1, , . Шифрование в CKKS осуществля‑

ется путем вычисления полиномов Лагранжа 
в поле комплексных чисел.

Схема использует приближенную арифметику 
для построения шифротекстов. Рассмотрим за‑
данную арифметику. В начале мы фиксируем ос‑
нование p  >  0 и  модуль q0, причем q  =  p q0 при 
0 < l ≤ L. Целое число p будет использоваться в ка‑
честве основы для масштабирования в приблизи‑
тельных расчетах. В качестве параметра безопас‑
ности λ выбирается такой параметр, что 
M M qL= ( )λ,  для полиномиального кольца. При 
границах  < l ≤ L уровня шифротекста l определя‑
ется вектор в  ℛ𝓀

𝓆ℓ для фиксированного целого 
числа k.
1.	 Генерация ключей: процесс шифрования на‑

чинается с генерации ключей: открытого клю‑
ча pk и  закрытого ключа sk. Закрытый ключ 
используется для дешифровки данных, а  от‑
крытый – для их шифрования.

2.	 Шифрование: чтобы зашифровать вектор от‑
крытого текста x, выполняются следующие 
действия:
•	 Дополнение: вектор m(x) дополнен нуля‑

ми, длина вектора равна заданной степени 
двойки N;

•	 Кодирование: вектор открытого текста x 
кодируется в  полином открытого текста 
m(x), который является полиномиальным 
представлением сообщения;

•	 Гомоморфное шифрование: полином m(x) 
шифруется с  помощью pk для получения 
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полинома c(x) шифротекста, при этом кон‑
тролируется уровень шума шифротекста – 
количество специально вносимых ошибок 
e, удовлетворяющее | |e ecan

Max∞ ≤ , для выра‑
жения c sk m e mod qMax L, = + ( )� .

3.	 Десшифрование: для дешифровки полинома 
c(x) шифротекста выполняются следующие 
действия:
•	 Гомоморфное дешифрование: полином c(x) 

дешифруется с помощью секретного ключа 
для получения полинома m x c sk modql( )← ( ), �  
в пространстве открытых текстов;

•	 Декодирование: для получения исходного 
текстового вектора x текстовый полином 
m(x) снова преобразуется из полинома в по‑
лином сообщений.

4.	 Гомоморфные операции: CKKS поддержива‑
ет несколько приближенных арифметических 
операций над зашифрованными данными, 
включая сложение и  умножение. Гомоморф‑
ное сложение и умножение можно выполнять 
в  пространстве шифротекстов без необходи‑
мости их дешифровки:
•	 Гомоморфное сложение: при получении 

двух шифротекстов c1(x)  и c2(x), представ‑
ляющих зашифрованные значения m1(x) 
и m2(x) соответственно, выполняется гомо‑
морфное сложение путем сложения соот‑
ветствующих коэффициентов по модулю: 
c(x) = c1(x) + c2(x), при этом ошибки e1 и e2 
также суммируются;

•	 Гомоморфное умножение: при наличии 
двух шифротекстов c1(x) и  c2(x), представ‑
ляющих зашифрованные значения m1(x) 
и  m2(x) соответственно, гомоморфное ум‑
ножение выполняется путем преобразова‑
ния зашифрованных полиномиальных тек‑
стов для последующего покомпонентного 
умножения по модулю исходного модуль‑
ного текста и  обратного преобразования: 
c(x) = c1(x) + c2(x), для умножения выделя‑
ются собственные границы ошибок emult ∈ ℛ 
с  e e lmult

can
multMax

∞ ( )�emultMax(l ), где emultMax(l ) заданная 
константа.

Как сложение, так и  умножение приводят 
к  увеличению ошибки аппроксимации e, схе‑
ма CKKS позволяет дешифровать данные, если 
ошибка находится в определенных пределах. При 
использовании схемы CKKS важно контролиро‑
вать рост ошибки, который зависит от количества 
операций и  их порядка. Учитывая особенности 
арифметики, умножение вносит большую по‑

грешность. Различные программные реализации 
схемы CKKS предлагают разные способы кон‑
троля уровня ошибки.

2.3. Нейронные сети, 
сохраняющие конфиденциальность

Интерес к  нейронным сетям, сохраняющим 
конфиденциальность (НССК), возник несколь‑
ко лет назад. В  своем обзоре [20] авторы иссле‑
дуют эту концепцию с теоретической точки зре‑
ния, рассматривая основные задачи и проблемы, 
с  которыми сталкиваются исследователи при 
построении НССК на основе ПГШ. В  основе 
НССК лежит концепция Machine Learning as a 
Service (MLaaS) [21], которая схожа с концепци‑
ями облачных вычислений [22–24]. В статье да‑
ны определения операций ПГШ, включая про‑
блемные операции. Помимо умножения матриц, 
также упоминается бутстраппинг [25], который 
используется для увеличения количества допу‑
стимых операций умножения. Также описаны 
инструменты для работы с ПГШ [26–28], вклю‑
чая используемые в НССК [29]. Проблема уско‑
рения НССК, работающих в  ПГШ, упоминает‑
ся в  статье отдельно. Эта тема также популярна 
среди исследователей, например, в  [30] изучает‑
ся ускорение операции умножения матриц путем 
модификации метода Хавели [31]. Однако опе‑
рации умножения, основанные на этом методе, 
по-прежнему достаточно ресурсоемки. В следую‑
щем разделе подробно рассмотрена операция ум‑
ножения матриц и способы повышения скорости 
обработки данных.

3. ОПЕРАЦИЯ УМНОЖЕНИЯ 
МАТРИЦ В ПРИБЛИЖЕННОЙ СХЕМЕ 

ГОМОМОРФНОГО ШИФРОВАНИЯ
Умножение матриц  – базовая операция для 

многих систем, в том числе и для НС. Рассмотрим 
ее алгоритм, основанный на умножении квадрат‑
ных матриц a и b размера n × n:

	 c a bi j
k

n

i k k j, , , ,= ⋅
=
∑

1

где i j k n, , ,∈1 , c – результат умножения. В откры‑
том виде этот алгоритм довольно прост. Однако 
в ПГШ его выполнение невозможно, так как мы 
не можем отдельно обратиться к элементу каж‑
дого внутреннего вектора. Рассмотрим подроб‑
но метод Хавели [31]. Для выполнения матрич‑
ного умножения в ПГШ матрицы должны быть 
закодированы в  диагональном представлении. 
Затем для выполнения умножения необходимо 
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выполнить несколько операций вращения со 
вспомогательными матрицами. Рассмотрим 
пример.

Пусть матрица A размера m × m представлена 
в  зашифрованном виде y0, ... , ym–1, где yi  =  (A0,i, 
A1,i+1, ... , Am–1, m+1). Сначала, y j Ai j j  = +� , 1. Далее, 
кусочное произведение между вектором весов 
и матрицей w = vA, где v v v vn= …{ }−0 1 1, , ,� � �  – вход‑
ной вектор, может быть вычислено как:

	
v x x x y y y

x y x y x
n n0 0 1 1 0 1 1

0 0 1 1

= …{ } …{ } =

= …
− −, , , , , ,

, , ,
� � � � � � �

� � � �



nn ny− −{ }1 1 ,

	
v x x x y y y

x y x
n n n n

n n

1 1 0 2 1 0 2

1 1 0

= …{ } …{ } =

=
− − − −

− −

, , , , , ,
,

� � � � � � �

� �



yy x yn n0 2 2, , ,� �…{ }− −

	 ...,

	
v x x x x y y y y

x y x
n n n− − −= …{ } …{ } =

=
1 1 2 1 0 1 2 1 0

1 1

, , , , , , , ,
,

� � � � � � � �

� �



22 2 1 1 0 0y x y x yn n, , , ,� � �…{ }− −

где  – покомпонентное произведение векторов.
Однако есть и другой способ, который подхо‑

дит для НССК. Возникает вопрос, настолько ли 
необходим подобный уровень конфиденциаль‑
ности.

Учитывая тот факт, что в  настоящее время 
невозможно обучить НС в  ПГШ за приемлемое 
время, НС обучается в открытом виде. Справед‑
ливо заметить, что значения весов являются от‑
крытыми и могут быть общедоступными и суще‑
ствует возможность их компрометации. Тогда нет 
смысла их шифровать, и мы можем применять их 
в открытом виде. Тогда можно использовать мо‑
дифицированный алгоритм, основанный на пре‑
дыдущем, где входная матрица кодируется в диа‑
гональном представлении, а веса представляются 
в  виде вектора. Такое умножение рассматрива‑
ется как умножение матрицы на скаляр, которое 
реализуется посредством операций умножения 
и вращения. Рассмотрим пример.

Пусть матрица A размера n × n представлена 
в зашифрованном виде a0, ... , am–1, где ai = (A0,i, 
A1,i+1, ... , An–1, n+1). Сначала, a j Ai j j  = +� , 1. Следу‑
ющее произведение w = vA, где v v v vn= …{ }−0 1 1, , ,� � �  – 
входной вектор, может быть вычислено как

	 v x a a an0 0 0 1 1= …{ }−, , , ,� � � �

	 v x a a an n1 1 1 0 2= …{ }− −, , , ,� � � �
	 ...,

	 v x a a a an n n− − −= …{ }1 1 1 2 1 0, , , , .� � � �

Этот метод требует m операций вращения, 
умножения и  сложения. Кроме того, вспомога‑
тельные матрицы w и  v в  зашифрованном виде 
занимают много памяти, как и  промежуточные 
зашифрованные матрицы до получения резуль‑
тата. Из формул видно, что, используя открытые 
значения, мы не только сокращаем количество 
операций, но и расход памяти. Для подтвержде‑
ния выводов было проведено экспериментальное 
исследование (рис. 2).

Из данных, представленных на рис. 2a, 
можно сделать вывод, что предложенный ал‑
горитм позволяет сократить объем памя‑
ти в  среднем в  7.89  раза. Линия тренда для 
данных, представленных на рис. 2b, равна 
0.0656n2 – 0.4452n + 2.0912 с коэффициентом де‑
терминации R2 = 0.9925. Таким образом, можно 
сделать вывод, что пространственная сложность 
уменьшилась с O(n4) до O(n2) для произведения 
матриц размера n × n. Учитывая, что для произ‑
ведения квадратных матриц размера n × n не‑
обходимо вычислить n2 скалярных умножений 
и 2n2 циклических сдвигов векторов, простран‑
ственная сложность алгоритма скалярного ум‑
ножения с зашифрованными данными снижает‑
ся с O(n2) до O(n).

(b) Haveli/Our

(a) Memory

Рис. 2. Исследование потребления памяти предлага‑
емым методом.
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Как видно на рис. 2b, потребление памяти со‑
кратилось с квадратичного закона до линейного. 
Это дает преимущество в эффективности при ра‑
боте с НССК. Однако, учитывая специфику схе‑
мы CKKS, необходимо проверить, не повлияли 
ли внесенные изменения на точность результа‑
та. Для этого необходимо построить нейронную 
сеть и  провести исследование. Далее рассмо‑
трим скорость, с  которой выполняются вычис‑
ления. Стоит отметить, что на рис. 3a показана 
общая скорость выполнения операций, включая 
шифрование и дешифрование.

Анализируя рис. 3a, можно сказать, что пред‑
ложенный метод выполняет умножение быстрее. 
Этот эффект достигается как за счет нового под‑
хода к умножению, так и за счет того, что шиф‑
рование и дешифрование упрощаются, посколь‑
ку умножение выполняется на открытом векторе 
весов НССК. Кроме того, мы предлагаем проа‑
нализировать соотношение скоростей методов 
(рис. 3b).

Линии тренда зависимости времени от n для 
алгоритма Хавели 0.0634n4 – 1.8561n3 + 20.897n2– 
– 88.794n + 118.56, для предложенного алгорит‑
ма 0.0461n4 – 1.3405n3 + 14.955n2– 63.491n + 84.81  
с  коэффициентом детерминации для обеих 
линий равным R2  =  0.9995 (рис.  3a). Асимпто‑

тически выигрыш во времени при увеличении n 
равен

	lim
. . . . .
. .n

n n n n
n→∞

− + − +
−

0 0634 1 8561 20 897 88 794 118 56
0 0461 1

4 3 2

4 33405 14 955 63 491 84 81
1 38

3 2n n n+ +
≈

≈
−. . .

. .
Время работы алгоритма для произведения 

квадратных матриц n × n уменьшилось в среднем 
в 1.49 раза (рис. 3b). С увеличением размера гра‑
фик становится более линейным, что можно объ‑
яснить увеличением избыточности, которая зави‑
сит от длины вектора, в то время как при малых 
размерах она зависит как от конструкции векто‑
ра, так и от вспомогательных матриц, необходи‑
мых для вращения.

В  целом можно сказать, что предложенный 
метод эффективен как с точки зрения потребле‑
ния памяти, так и  скорости вычислений. Стоит 
отметить, что этот результат достигается за счет 
снижения конфиденциальности, а  именно кон‑
фиденциальности весов НССК, при условии, что 
веса являются общеизвестными при обучении 
НССК в открытом виде.

4. ИССЛЕДОВАНИЕ ТОЧНОСТИ
В рамках исследования были проведены экспе‑

рименты по обучению и тестированию нейронной 
сети, а также ее зашифрованной версии на наборе 
данных MNIST. Целью эксперимента было оце‑
нить производительность модели в обычном и за‑
шифрованном режимах, а также изучить влияние 
гомоморфного шифрования на производитель‑
ность и точность модели. Аппаратная конфигура‑
ция состоит из процессора Intel(R) Xeon(R) CPU 
E5–2696 v3 с  тактовой частотой 2.30  ГГц, 32 ГБ 
оперативной памяти DDR4 с частотой 2133 МГц 
и твердотельного накопителя объемом 1 ТБ. Сред‑
нее время измерялось путем запуска алгоритмов 
на платформе 10 000 раз. В ходе эксперимента со‑
бирались данные о потерях при обучении и тести‑
ровании, а также о точности классификации для 
каждого класса. Для этого была построена НС на 
основе следующей математической модели.

Рассмотрим сверточную нейронную сеть 
(СНС) со следующими слоями и параметрами:
•	 Входное изображение: I, одноканальное изо‑

бражение.
•	 Первый сверточный слой (C1): применя‑

ет 4  фильтра с  размером ядра 7 × 7 с  шагом 3 
и размером 0.

•	 Первый слой – полносвязный (F1): преобразу‑
ет упрощенные карты признаков с  использо‑
ванием H-нейронов.

(b) Haveli/Our

(a) Time

Рис. 3. Исследование времени вычисления операции 
умножения матриц.
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•	 Второй полносвязный слой (F2): сопоставля‑
ет скрытый слой с выходным слоем с O-ней‑
ронами.
Математические операции, выполняемые 

СНС, выглядят следующим образом:
1.	 Работа первого сверточного слоя может быть 

определена как
	 C I Conv d I K S P1 1 1 12( ) = ( ), , ,� ,

	 где Ki  =  7 × 7  – размер ядра, с  шагом S1  =  3 
и размером P1 = 0.

2.	 Выходной сигнал C1 проходит через функцию 
активации и, возможно, другие операции, та‑
кие как объединение или нормализация, после 
чего сглаживается и поступает в первый слой 
с полным подключением.

3.	 Работа первого полносвязанного слоя может 
быть определена как

	 F X XW bF F1 1 1
( )= +�� ,

	 где X – входной вектор для F1; WF1
 и bF1

 пред‑
ставляют собой веса и  смещения F1 соответ‑
ственно.

4.	 Работа второго полносвязанного слоя анало‑
гично определяется как

	 F Y YW bF F2 2 2
( ) = +� ,

	 где Y – входной вектор F2, полученный из вы‑
хода F1; WF2

 и bF2
 – веса и смещения F2 соот‑

ветственно. Эта модель описывает структуру 
СНС, подчеркивая последовательность от об‑
работки на сверточном слое до генерации ко‑
нечного вывода через полносвязанные слои.
СНС была выбрана в качестве модели потому, 

что ПГШ обладает свойствами как гомоморфиз‑
ма, так и автоморфизма, благодаря которым вра‑
щение зашифрованных матриц для реализации 
матричного умножения реализовать достаточно‑
го просто. Кроме того, эти свойства позволяют 
достаточно эффективно выполнять математиче‑
скую операцию свертки [32]. Далее рассмотрим 

результаты работы полученной модели. А имен‑
но, данные о потерях (рис. 4).

На рис. 4 показана динамика потерь нейрон‑
ной сети в процессе обучения для 10 эпох. По оси 
абсцисс откладывается номер теста, равный ко‑
личеству эпох (от 1 до 10), а по оси ординат – ко‑
личество потерь. На графике видно уменьшение 
потерь с каждой последующей эпохой, что свиде‑
тельствует об адекватном поведении модели при 
использовании нового алгоритма обучения.

На рис.  5 показана точность классифика‑
ции модели на тестовых данных для каждого из 
10 классов. По оси абсцисс представлены классы 
(от 0 до 9), а по оси ординат – процент точности 
для каждого класса. График помогает наглядно 
представить, как модель справляется с  класси‑
фикацией различных категорий, выявляя классы, 
в которых модель работает лучше или хуже.

Результаты экспериментов показывают, что 
нейронная сеть демонстрирует высокую точ‑
ность как в обычном, так и в зашифрованном ре‑
жимах, причем в зашифрованном режиме общая 
точность несколько повышается. Это говорит 
о  том, что применение гомоморфного шифро‑
вания не оказывает существенного негативно‑
го влияния на способность модели к классифи‑
кации. Кроме того, тот факт, что в  некоторых 
классах зашифрованная СНС показывает более 

Рис. 4. Исследование функции потерь для PPNN.
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Рис. 5. Исследование точности PPNN для различных классов.
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точные результаты, требует дополнительных ис‑
следований.

5. ЗАКЛЮЧЕНИЕ
Результатом исследования по адаптации 

НССК для работы с ПГШ стали результаты, ко‑
торые подчеркивают потенциал и  ограничения 
данного подхода. Исследование показывает, что, 
изменив метод умножения зашифрованных ма‑
триц, можно успешно использовать НССК при 
сохранении эффективности обработки данных 
и потребления памяти.

Анализ результатов тестирования НССК по‑
казал, что модель демонстрирует улучшение 
производительности с  каждой эпохой, что вид‑
но по снижению потерь при тестировании. Это 
говорит о том, что НССК адекватно адаптирует‑
ся к  зашифрованным данным и  эффективно их 
обрабатывает. Результаты тестирования модели 
показали высокую точность классификации как 
для каждого из классов, так и в целом, что под‑
тверждает эффективность модели в задачах клас‑
сификации. Интересно отметить, что зашифро‑
ванная версия модели показала сопоставимую, 
а  в  некоторых случаях даже более высокую точ‑
ность, что говорит о том, что применение ПГШ 
не оказывает существенного негативного вли‑
яния на способность модели к  классификации. 
Тем не менее следует отметить, что использова‑
ние приближенной ПГШ требует дальнейших 
исследований для оптимизации баланса между 
безопасностью, конфиденциальностью и  произ‑
водительностью модели. Важно изучить влияние 
различных типов аппроксимации функции акти‑
вации на точность и общую производительность 
модели, а  также разработать методы улучшения 
производительности НССК.

В  статье предложен алгоритм скалярного ум‑
ножения, позволяющий уменьшить простран‑
ственную сложность с  O(n2) до O(n) и  сокра‑
тить время вычисления скалярного умножения 
в 1.38 раза.

Результаты данного исследования открывают 
новые перспективы для разработки безопасных 
НС, особенно в тех областях, где требуется обра‑
ботка конфиденциальных данных, а  также под‑
черкивают важность продолжения исследований 
в  этой области для достижения оптимального 
сочетания безопасности, конфиденциальности 
и эффективности в НССК. В будущем планиру‑
ется исследовать и  разработать методы выпол‑
нения других операции в НССК для повышения 
эффективности вычислений, потребления памя‑
ти, точности и конфиденциальности.
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HIGH-SPEED CONVOLUTION CORE ARCHITECTURE 
FOR PRIVACY-PRESERVING NEURAL NETWORKS
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Due to legal restrictions or restrictions related to companies' internal information policies, businesses often 
do not trust sensitive information to public cloud providers. One of the mechanisms to ensure the security 
of sensitive data in clouds is homomorphic encryption. Privacy-preserving neural networks are used to de‑
sign solutions that utilize neural networks under these conditions. They exploit the homomorphic encryption 
mechanism, thus enabling the security of commercial information in the cloud. The main deterrent to the use 
of privacy-preserving neural networks is the large computational and spatial complexity of the scalar multi‑
plication algorithm, which is the basic algorithm for computing mathematical convolution. In this paper, we 
propose a scalar multiplication algorithm that reduces the spatial complexity from quadratic to linear, and 
reduces the computation time of scalar multiplication by a factor of 1.38.

Keywords: matrix operations; artificial neural networks; fully homomorphic encryption; CKKS; TenSEAL, 
privacy-preserving neural networks
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Авторами рассматривается задача PIR (Private Information Retrieval) обеспечения безопасных запро‑
сов к базе данных. Ранее авторы рассматривали задачу для базы данных, размещенной на облаке 
при наличии активного противника, который не вмешивается в выполнение протокола, но может 
производить атаку с известными открытыми запросами. В предложенных алгоритмах номер бита 
i представляется в системе счисления по основанию l с числом разрядов d. Предложен алгоритм 
размещения базы данных на облаке и алгоритм запроса требуемого бита с использованием переста‑
новок в цифрах разряда номера бита, при задании номера бита i в системе счисления по основанию 
l. Перестановки рассматриваются как секретные ключи шифрования. Приведены оценка комму‑
никационной сложности и  оценки вероятности угадывания номера бита при однократной атаке 
с известным открытым запросом номера бита i и при атаке с неограниченным числом известных 
открытых запросов.

Ключевые слова: база данных, облачные вычисления, PIR
DOI: 10.31857/S0132347424060027, EDN: DZDHBD

1. ВВЕДЕНИЕ
В работах [1, 2] авторы исследовали задачу ор‑

ганизации конфиденциальных запросов к  базе 
данных (PIR – Private Information Retrieval) в слу‑
чае размещения реплицированной базы данных 
на облаке и наличия активного противника, ра‑
ботающего по протоколу, но имеющему возмож‑
ность производить атаку с известными открыты‑
ми запросами.

Задача PIR в  информационно-теоретической 
постановке была сформулирована в  1995  г. Шо‑
ром, Голдрайхом, Кушелевицем и Суданом [3].

Классическая постановка задачи PIR:
•	имеется база данных  – бинарная строка 

X  =  (x1, ..., xn) длины n, хранящаяся на сервере 
в облаке;

•	клиент хочет получить один бит информа‑
ции xi из базы данных X так, чтобы никто, кроме 

клиента, обращающегося с  запросом, не смог 
определить, с какой позиции i был запрошен бит.

В работах [3, 4] было показано, что если база 
данных размещена на единственном сервере, ко‑
торый полностью контролируется противником, 
то теоретико-информационное условие конфи‑
денциальности корректного протокола PIR мо‑
жет быть выполнено только том случае, когда 
клиент запрашивает базу данных целиком. Одна‑
ко в  этом случае коммуникационная сложность 
протокола, т. е. общее количество бит, которыми 
обмениваются участники протокола за время его 
работы, будет не меньше размера базы данных, 
что делает его практически не применимым.

Для уменьшения коммуникационной слож‑
ности в  работах [3, 4] была предложена модель 
реплицированной базы данных, в  которой не
сколько одинаковых копий строки X = (x1, ..., xn) 
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размещалось на разных серверах. Предполагалось, 
что клиент имеет связь с каждым из этих серверов, 
но сами серверы не имеют связи друг с  другом. 
Также предполагалось, что противник может на‑
блюдать любой из серверов, на которых размещена 
база данных, причем, возможно, разные серверы 
во время выполнения разных сеансов протокола.

Очевидно, что в  облачных информационных 
системах нельзя обеспечить изолированность ко‑
пий распределенной базы данных друг от друга. 
Поскольку ни пользователь, ни клиент не могут 
контролировать облако, то всегда предполагает‑
ся наличие на облаке противника. С учетом это‑
го выбирается модель для дальнейших исследо‑
ваний. Важное отличие от классической модели, 
в  рассматриваемой модели противники на раз‑
ных серверах могут общаться.

В работах [1, 2] предлагалась модель, включаю‑
щая в себя облако, состоящее из нескольких серве‑
ров, на каждом из которых хранится копия одной 
и той же базы данных, дилера, центра аутентифи‑
кации, пользователей, клиентов, противника.

Серверы в облаке соединены посредством не‑
защищенных каналов связи друг с  другом и  ди‑
лером. По этим каналам серверы обмениваются 
информацией между собой и дилером. Облачные 
серверы и незащищенные каналы связи доступ‑
ны для стороннего наблюдателя. Дилер находит‑
ся вне облака, противнику недоступен. Основной 
функцией дилера являлось шифрование и  де‑
шифрование информации при работе с облаком. 
Предполагалось, что противник не только пас‑
сивно наблюдает, но производит атаку с извест‑
ными открытыми запросами.

В  работах [1, 2] была получена оценка ком‑
муникационной сложности работы протокола, 
а также оценки вероятности угадывания против‑
ником, работающим по протоколу, номера бита 
i при однократной атаке и при атаке с неограни‑
ченным числом известных открытых запросов.

В отличие от работ [1, 2] в данной статье пред‑
лагается вместо шифрования использовать пере‑
становки номеров битов.

Предложены алгоритмы, основанные на пере‑
становках, для представления номера бита в новой 
системе счисления, формирования запроса к обла‑
ку, обработки ответа облака и получения значения 
искомого бита. Даны новые оценки коммуникаци‑
онной сложности алгоритмов и  вероятности уга‑
дывания противником номера запрошенного бита.

В  отличие от рассматриваемых в  [1, 2] алго‑
ритмах предлагается: использовать перестановки 
цифр номера бита в выбранной системе счисле‑
ния вместо шифрования. В новом алгоритме по‑

иск противником рядом стоящих запрашиваемых 
битов затруднен, и  замена сдвига в  интервале 
множества битов на перестановку не позволяет 
противнику сделать вывод по одному запраши‑
ваемому множеству об остальных не пересекаю‑
щихся с этим множеством множествах.

Получены оценки вероятности угадывания 
номера бита при однократной атаке с известным 
открытым запросом номера бита i  и  при атаке 
с  неограниченным числом известных открытых 
запросов при наличии противника на облаке. 
Приведена оценка коммуникационной сложно‑
сти алгоритма.

2. МОДЕЛЬ ВЫЧИСЛЕНИЙ, 
ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ 

И ПОСТАНОВКА ЗАДАЧИ
2.1. Состав модели

Состав модели вычислений, для которой 
в  данной статье исследуется облачный вариант 
задачи PIR, аналогичен составу модели, рассмо‑
тренной в [2].

Модель включает в себя:
Облако. Состоит из нескольких серверов, хра‑

нящих копии одной и той же базы данных. Копии 
на серверах имеют разные перестановки номеров 
битов. Серверы соединены посредством незащи‑
щенных каналов связи друг с другом и дилером.

Пользователь. Хранит данные на облаке. Пред‑
полагается, что на облаке хранится k копий баз 
данных. Для загрузки данных пользователь обра‑
щается к дилеру по каналу связи, использующему 
стандартный криптографический протокол для 
обмена зашифрованными данными.

Клиенты. Запрашивают некоторую информа‑
цию из базы данных. Обращаются для выпол‑
нения запроса к  дилеру. С  дилером соединены 
каналами связи, использующими стандартный 
криптографический протокол для обмена за‑
шифрованными данными.

Центр аутентификации. Аутентифицирует 
пользователя и клиентов.

Дилер. Находится вне облака, противнику не‑
доступен. Канал связи с облаком является неза‑
щищенным. Объем памяти дилера для посто‑
янного хранения данных пренебрежимо мал по 
сравнению с  n. Получив от клиента данные для 
размещения на облаке, дилер выполняет переста‑
новку уникальную для каждой копии базы дан‑
ных, размещает данные на облаке. При запросе 
клиента дилер возвращает клиенту значение.

В дальнейшем для простоты будем считать, что 
база данных загружается одним пользователем. 
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Предполагается, что после загрузки база данных 
не может быть изменена. Либо изменена полно‑
стью. Также будем рассматривать случай запроса 
одного бита.

2.2. Основные определения
Противник. Не вмешивается в  выполнение 

криптографического протокола. Имеет доступ 
к базе данных на облаке, к каждой ее копии, к ка‑
налам связи на облаке. Может создавать фальши‑
вых клиентов, работающих по протоколу. То есть 
противник не только пассивно наблюдает, но 
и сам может производить атаку с известными от‑
крытыми запросами. Противник может заставить 
дилера отправить запрос на облако. При этом 
противник знает алгоритм формирования запро‑
са к облаку, но не знает конкретных параметров. 
Противник также знает алгоритм формирования 
ответа клиенту дилером на основании ответа, по‑
лученного дилером от облака.

Угроза: угадывание исходного номера бита, за‑
прашиваемого клиентом в базе данных.

Атака:
•	Атака пассивного противника на облаке за‑

ключается в  наблюдении за запросом от дилера 
и  ответом облака дилеру. Эта информация ис‑
пользуется для сбора статистики и анализа.

•	Атака активного противника (атака с  из‑
вестными открытыми запросами) заключается 
в  создании фальшивых клиентов и  управление 
ими. При помощи фальшивых клиентов актив‑
ный противник может сформировать произволь‑
ное число запросов, что позволит в  коалиции 
с  пассивным противником на облаке собрать 
и проанализировать информацию для всей базы 
данных.

2.3. Постановка задачи 
и основные обозначения

В отличие от классической постановки задачи 
PIR будем рассматривать базу данных (бинарная 
строка) X = (x0, ..., xn–1) длины n, где элементы X 
нумеруются с нуля. Это делает белее удобным ра‑
боту с различными системами счисления.

Клиент хочет получить один бит информации 
xi с номером i из базы данных X так, чтобы про‑
тивник не узнал ничего о том, с какой позиции i 
был запрошен бит.

Будем размещать на облаке k копий баз дан‑
ных. Пусть k = 2d, где d ≥ 2. На практике 4 ≤ k ≤ 32. 
В дальнейшем будем предполагать, что на k нало‑
жены эти ограничения.

Без потери общности предполагается, что 
n  =  l d, т.  е. d  =  log2k и  l nd= . Заметим, что по‑

скольку l-основание системы счисления, то l ≥ 2 
и d подбирается так, чтобы l  n. Пусть L n

lp = .
Так как l nd= , округлим l до целого числа 

в большую сторону.
Пусть x – элемент группы Z2, обозначим через 

h h k∈ …{ }( )1, ,  – номер копии базы данных.

3. ПРЕДСТАВЛЕНИЕ НОМЕРА БИТА 
l-ИЧНОЙ СИСТЕМЕ СЧИСЛЕНИЯ

Представим номер бита как d разрядов 
в  l-ичной системе счисления. Выбор l и  d ос
новывается на известной модели [1, 2], где но‑
мер i бита xi представлен в  l-ичной записи: 
i a a l a l

i i
d
i d= + +…+( ) ( )
−

( ) −
0 1 1

1. Цифры l-ичной запи‑
си представляют собой элементы кортежа 
a a

i
d
i

0 1
( )

−
( )…( ), , � � длины d, т.  е. на j-м месте кортежа 

стоит l-ичная цифра.
Эти d элементов кортежа можно интерпрети‑

ровать как точку с целочисленными координата‑
ми в гиперкубе размерности d и длиной стороны 
l, где l = nd . Такое множество точек куба размер‑
ности d можно рассматривать как множество слов 
длины d с алфавитом (0, ..., l – 1).

4. ЗАГРУЗКА ДАННЫХ НА ОБЛАКО
4.1. Инициализация массива X c

Напомним, что n = l d и L n
lp = . Выберем целые 

числа du ≥ 2 и lu ≥ 2 такие, чтобы l Lu
d

p
u ″  и обозна‑

чим L lp u
du− =  (Lp

– ≤ Lp). Пусть l
n

Lp

* =










− , где l* ≥  l 

и nu = l*Lp
–. Ниже будет показано, что коммуника‑

ционная сложность зависит от l*. Для того чтобы 
коммуникационная сложность не возрастала, 
нужно подобрать значения du и lu так, чтобы ми‑
нимизировать разность Lp – Lp

–. Конкретный вы‑
бор значений du и  lu, который не только мини
мизирует разность Lp – Lp

–, но и  уменьшает 
количество вычислительных операций, произво‑
димых дилером, будет описан ниже.

Поскольку nu ≥ n, добавим в базу данных nu – n 
битов. Добавленные биты могут быть заполнены 
произвольными значениями. Биты будут добав‑
лены в конец базы данных.

Пусть lc и  dc целые числа, такие, что n lc c
dc=  

и nc ≥ nu, тогда nc ≥ n.
На облако будет загружаться массив 

X x xc c
n
c

c
= …( )−0 1, , , где nc ≥ n, т. е. на облако будет 
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загружено nc битов. Нумерация массива X c начи‑
нается с нуля. Увеличение числа элементов в мас‑
сиве необходимо, чтобы вместо шифрования би‑
тов использовать их секретную перестановку. Это 
позволяет уменьшить объем памяти, необходи‑
мой дилеру для хранения данных и снизить ком‑
муникационную сложность.

4.2. Построение матрицы перестановок
Номер запрашиваемого бита в lc-ичной систе‑

ме счисления можно представить как целочислен‑
ную точку гиперкуба размерности dc  с длиной сто‑
роны lc. При этом j-я ( j dc∈ …{ }1, , ) координата 
точки гиперкуба является j-м разрядом представ‑
ления числа в lc-ичной системе счисления.

Изменим номера битов путем изменения цифр 
в  разрядах номеров в  lc-ичном представлении. 
Цифры в каждом разряде изменяются с помощью 
перестановок цифр от 0 до lc – 1. Для каждого раз‑
ряда вычисляется своя перестановка. Поскольку 
перестановки являются случайными, то для раз‑
ных разрядов возможно, что перестановки совпа‑
дают.

Выберем копию базы данных h k∈ …{ }1, , . 
Пусть βhj – случайная перестановка из lc чисел от 
0 до lc – 1, где j dc∈ …{ }1, ,  – номер разряда числа 
в lc-ичной системе счисления. Представим пере‑
становку чисел в виде таблицы:

	
0 1

0 1

… −
( ) … −( )







l

l
c

hj hj cβ β
.

Тогда β β βh h hdc
= …{ }1, , �   – множество “пораз‑

рядных” перестановок числа в  lc-ичной системе 
счисления.

Построим матрицу Mβ размера k × dc, где k  – 
число копий базы данных, а dc – целое число, та‑
кое, что n lc c

dc= . Элементом βij матрицы Mβ явля‑
ется случайная перестановка целых чисел от 0 до 
lc – 1. Таким образом, для каждой копии базы дан‑
ных будет построено dc случайных перестановок.

Для генерации перестановок цифр номера би‑
та lc-ичной системе счисления используется дат‑
чик псевдослучайных чисел PRNG (db, m). На вход 
PRNG (db, m) подается уникальное значение db 
для конкретной базы данных и номер копии ба‑
зы данных m. Датчик псевдослучайных чисел при 
одинаковой инициализации генерирует одинако‑
вую перестановку.

Поскольку матрица Mβ требует для хранения 
значительного объема памяти, матрица Mβ при 
необходимости восстанавливается с помощью 
датчика псевдослучайных чисел.

4.3. Отображение i i
h

c→
β
�

Номер бита i представляем в системе счисле‑
ния по основанию lc с числом разрядов dc:

	 i a l
j

d

j c
j

c

= ⋅
=

−∑
1

1, где a lj c∈ … −{ }0 1, , .

Для копии базы данных с  номером h выпол‑
ним перестановки для разрядов числа i:

	 i a lc
j

d

hj j c
j

c

= ( ) ⋅
=

−∑
1

1β .

Обозначим такое преобразование через i i
h

→
β
� c, 

где β β βh h hdc
= …{ }1, , �  – строка матрицы Mβ. Необ‑

ходимые для работы алгоритма элементы матри‑
цы Mβ генерируются с помощью датчика псев‑
дослучайных чисел.

4.4. Вспомогательные построения, 
необходимые для работы алгоритма запроса 

бита – алгоритм построения матрицы G
Построим матрицу G размера nc × 2:

	 G

n

x

xc

c

n
c

c

=
−

















−

0

1

0

1

�

� � � �
�  .

Первый столбец этой матрицы  – последова‑
тельность nc целых чисел 0 1, nc − . Второй стол‑

бец матрицы G – элементы X x xc c
n
c

c
= …( )−0 1, , .

4.5. Формирование матриц Gh для каждой копии 
базы данных из матрицы G

Алгоритм формирования матриц Gh
Вход: матрица G.
Выход: матрицы Gh для всех h k∈ …{ }1, , .
Шаг 1. Выберем копию базы данных h.
Шаг 2. Скопируем матрицу G в матрицу Gaux.
Шаг 3. Для каждого элемента i, где i = 0, ..., nc – 1 
первого столбца матрицы Gaux выполним преоб‑

разование i i
h

c→
β
� .

Шаг 4. Отсортируем строки матрицы Gaux по пер‑
вому столбцу. Получим матрицу Gh.
Шаг 5. Выполним Шаги 1–4 для всех 
h k∈ …{ }1, ,  ■.

В  результате работы алгоритма получим Gh 
h k∈ …{ }( )1, ,  матриц для каждой копии базы дан‑

ных .
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4.6. Загрузка данных на облако
Алгоритм загрузки данных на облако аналоги‑

чен алгоритму, приведенному в [1, 2].
На вход алгоритма подается бинарный массив 

X = (x1, ..., xn). Для удобства будем предполагать, 
что X  =  (x0, ..., xn–1). В  результате работы алго‑
ритма на облако загружается k преобразованных 
с помощью перестановки копий баз данных.

Алгоритм загрузки данных на облако
Вход: X.
Выход: загрузка на облако Gh, где h k∈ …{ }1, , .
Шаг 1. Дилер аутентифицирует пользователя. 
Пользователь передает дилеру массив значений 
битов X = (x0, ..., xn–1). Дилер преобразует массив 
X = (x0, ..., xn–1) в массив X x xc c

n
c

c
= …( )−0 1, , .

Шаг 2. Дилер формирует матрицу G  =  || gi, j ||, где 
i n jc= − =0 1 1 2, , , , � � .
Шаг 3. Дилер генерирует элементы матрицы Mβ 
в процессе работы.
Шаг 4. Дилер создает матрицу Gh, где h k∈ …{ }1, , .
Шаг 5. Дилер загружает матрицу Gh, где  h k∈ …{ }1, ,  
на облако.
Шаг 6. Шаги 4, 5 дилер выполняет в  цикле для 
каждой копии базы данных. По окончании пере‑
бора k копий базы данных происходит выход из 
алгоритма ■.

Число элементов, переданных каждой из k ко‑
пий базы данных равно 2 nc.

Заметим, что поскольку в дальнейшем восста‑
новление матрицы G не предполагается, матрицу 
G дилер не хранит.

Для выполнения перестановки дилеру требу‑
ется иметь объем памяти, сравнимый с объемом, 
необходимым для хранения одной копии базы 
данных. При этом предполагается, что дилер мо‑
жет работать с несколькими базами данных и нет 
необходимости их одновременного хранения. 
После загрузки базы данных на облако память 
дилера очищается для работы со следующей ба‑
зой данных.

В  приведенном ниже алгоритме дилер дол‑
жен выполнять Шаги 4 и 5 для каждой копии ба‑
зы данных последовательно. Иначе ему придется 
хранить в  памяти все k копий базы данных, что 
приводит к большим расходам памяти.

5. ВЫПОЛНЕНИЕ ДИЛЕРОМ 
ЗАПРОСА КЛИЕНТА

Для сокрытия при запросе искомого номера 
бита, вместо одного запрашиваемого номера бита 
дилер будет запрашивать у облака множество но‑

меров битов мощностью l*. Причем только один 
из этих номеров битов был запрошен клиентом. 
Каждый элемент из множества номеров битов ле‑
жит только в одном из интервалов мощности Lp

– 
разбиения этого множества.

5.1. Использование множества номеров битов 
в запросе для сокрытия номера бита

Пусть клиент интересуется элементом xi   X. 
Этому элементу соответствует i-я строка матри‑
цы G, причем 0 ≤ i < n. Отрезок целых чисел от 0 
до nc – 1 содержит l* интервалов по Lp

– элементов 
в каждом из них.

Номер i лежит ровно в  одном из этих интер‑
валов. Далее для этого элемента i выберем по 
одному элементу в каждом из оставшихся l* – 1 
интервалов (алгоритм выбора элементов описан 
в п. 5.2). Таким образом, каждому номеру i поста‑
вим в соответствие другие l* – 1 чисел, лежащих 
в различных интервалах и не попадающих в ин‑
тервал, где лежит само число i.

Как было сказано выше, каждый интервал 
можно интерпретировать как дискретный гипер‑
куб размерности du с длиной стороны lu.

Выберем интервал m l∈{ }1, , *
 . Пусть σmj  – 

случайная перестановка из lu чисел от 0 до lu – 1, 
где j du∈ …{ }1, ,  – разряд числа в lu-ичной систе‑
ме счисления. Как и ранее, запишем перестанов‑
ку чисел в виде

	
0 1

0 1

… −
( ) … −( )







l

l
u

mj mj uσ σ
.

Тогда σ σ σm m mdu
= …{ }1, , �   – множество “по‑

разрядных” перестановок числа в lu-ичной систе‑
ме счисления du-разрядного числа.

Построим матрицу Mσ (по аналогии с матри‑
цей Mβ) размера l* × du, где l* – число интервалов, 
а du – целое число, такое, что L lp u

du− = . Элементом 
σij матрицы Mσ является случайная перестановка 
целых чисел от 0 до lu – 1. Таким образом, для 
каждого интервала на которые разбивается база 
данных будет построено du случайных переста‑
новок.

Для генерации перестановок цифр номера 
бита матрицы Mσ используется датчик псев‑
дослучайных чисел PRNG (db, m, j). На вход 
PRNG (db, m, j) подается уникальное значение db 
для конкретной базы данных, номер интервала m 
(всего l* штук) и  j du∈ …{ }1, ,   – разряд числа 
в lu-ичной системе счисления. Датчик псевдослу‑
чайных чисел при одинаковой инициализации 
генерирует одинаковую перестановку.
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Поскольку матрица Mσ требует для хранения 
значительного объема памяти, элементы матри‑
цы Mσ восстанавливаются с помощью датчика 
псевдослучайных чисел.

Поскольку отрезок целых чисел от 0 до nc – 1 
разбивается на l* интервалов по Lp

– элементов 
в  каждом интервале, то любое число из этого 
множества попадет в один из таких интервалов.

Найдем номер интервала w, в который попало 
число i при разбиении отрезка целых чисел от 0 до 
nc – 1 на l* интервалов:

	 w
i

Lp

=











+− 1.

Заметим, что w l∈ …{ }1, , * .
Приведем i по модулю Lp

–. Обозначим через 
i  ′ =  i  mod  Lp

– результат приведения. Тогда i  ′ явля‑
ется порядковым номером в  интервале с  номе‑
ром w.

Представим порядковый номер i  ′ в интервале 
с номером w в lu-ичной системе счисления:

	 ′ = ⋅
=

−∑i a l
j

d

j u
j

u

1

1, где a lj u∈ … −{ }0 1, , .

Рассмотрим сумму 
j

d

wj j u
j

u

a l
=

− −∑ ( ) ( ) ⋅
1

1 1σ , где 

σwj ja( ) ( )−1   – обратная перестановка, такая, что 

σ σwj wj j ja a( ) ( )



 =

−1 .

Обозначим через D aj wj j= ( ) ( )−
σ

1 , величина 
Dj – секрет, известный только дилеру.

В  каждом интервале m m l∈ 



( )1, *  найдем 

число, такое, что ′ ( ) = ( ) ⋅
=

−∑i m D l
j

d

mj j u
j

u

1

1σ , где 

j = 1, ..., du. Для всех интервалов таких чисел i  ′(m) 
будет l*. Заметим, что для интервала w это будет 
число i  ′.

Обозначим через Seti полученное по алгорит‑
му 5.2 (Алгоритм построения множества Seti ди‑
лером) множество из l* чисел.

5.2. Построение множеств Seti дилером
Алгоритм построения множества Seti дилером

Вход: X c, i, l*, du, Lp
–.

Выход: множество Seti.
Seti = ∅
// найдем номер интервала

w
i

Lp

←











+− 1

// найдем порядковый номер числа i 
// в соответствующем интервале разбиения
i  ′ = i  mod  Lp

– 
// найдем представление числа i  ′ в lu-ичной записи

′ = ⋅
=

−∑i a l
j

d

j u
j

u

1

1, a lj u∈ … −{ }0 1, ,  

// найдем координаты D lj u∈ … −{ }0 1, ,  
for j ← 1 to du do

D aj wj j= ( ) ( )−
σ

1  

for m ← 1 to l* do 

′ ( ) = ( ) ⋅
=

−∑i m D l
j

d

mj j u
j

u

1

1σ

Set Set L m i mi i p= ∪ + ( )( )′−�

Листинг 1. Алгоритм построения множества Seti
5.3. Запрос клиентом бита с номером i. 

Предварительные замечания
Пусть клиент запрашивает бит с номером i.
После подтверждения центром аутентифика‑

ции полномочий клиента дилер разрешает кли‑
енту отправить запрос.

Напомним, что физически в облаке хранятся 
матрицы Gh, h k∈ …{ }1, , . Строка матрицы Gh со‑
стоит из номера строки и значения бита. Без по‑
тери общности (как было сказано выше) будем 
индексировать элементы базы данных с 0.

Так же как и в [1, 2] для каждого элемента мно‑
жества Seti случайно и  равномерно выбирается 
номер копии базы данных. Все элементы множе‑
ства Seti для которых выбрана копия базы дан‑
ных  h, обозначим через множества Seti

h, где 
h k∈ …{ }1, , . Очевидно, что множества Seti

h не пе‑
ресекаются между собой, поскольку все элементы 
множества Seti различны и каждому элементу ста‑
вится в соответствие ровно один номер h (номер 
копии базы данных). Объединение множеств Seti

h 
содержит все элементы множества Seti, т. е. 
Set Seti i

h�= ∪ , где h k∈ …{ }1, , .
Пусть для запрашиваемого номера i в множе‑

стве Seti была выбрана копия базы данных h.
Для каждого элемента множества Seti

h выпол‑
няется перестановка βh, пусть y = βh(i). Получен‑
ные после перестановки элементы сортируются. 
Это множество обозначим через Seti

hβ . Позиция ipos 
элемента y = βh(i) в множестве Seti

hβ  запоминается.
Дилер на время выполнения запроса фор‑

мирует вектор-строку snum из трех элементов 
snum = (s1, s2, s3):
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•	Первый элемент вектора-строки snum содер‑
жит номер элемента i.

•	Второй элемент вектора-строки snum содер‑
жит номер копии h базы данных, в которую попал 
номер s1.

•	Третий элемент вектора-строки snum содер‑
жит позицию ipos номера y в множестве Seti

hβ .
Вектор-строка snum позволяет дилеру после по‑

лучения ответа от облака сразу отбросить данные, 
кроме данных, необходимых для выполнения за‑
проса.

Вектор-строка snum формируется у дилера и из‑
вестна только дилеру. Вектор-строка snum является 
секретной.

На k копий базы данных дилер отправляет 
в общей сложности l* номеров.

После выполнения запроса дилер с помощью 
вектора-строки snum получает значение искомого 
элемента и отправляет его клиенту.

Алгоритм подготовки запроса к облаку
Вход: X c, i, l*, du, Lp

–.
Выход: Seti

hβ , snum.
Шаг 1. Клиент обращается к дилеру и запрашива‑
ет значение бита с номером i.
Шаг 2. Дилер генерирует множество Seti.
Шаг 3. Дилер на время выполнения запроса i-го 
бита резервирует память для вектора-строки snum 
трех элементов.
Шаг 4. Дилер заносит i в первый элемент векто‑
ра-строки snum.
Шаг 5. Дилер выполняет разбиение множества 
Seti на непересекающиеся подмножества Seti

h, где 
h k∈ …{ }1, , , путем случайного и  равномерного 
выбора номера копии базы данных для каждого 
элемента множества Seti.
Дилер заносит во второй элемент вектора-строки 
snum номер копии базы данных s2, соответствую‑
щей элементу s1.
Шаг 6. Дилер выполняет перестановку βh для эле‑
ментов множества Seti

h после чего полученные 
после перестановки новые номера сортируются. 
Получаем множество Seti

hβ . Этот шаг выполняется 
для всех h k∈ …{ }1, , .
Шаг 7. Дилер заносит в третий элемент вектора-
строки snum позицию ipos номера y is= ( )β 2  в мно‑
жестве Seti

hβ ■.

5.4. Выполнение запроса к облаку 
и ответ облака

Алгоритм обмена информацией с облаком
Вход: Set h ki

hβ � ∈ …{ }( )1, , .

Выход: значения битов в том же порядке, в кото‑
ром передавались номера битов множества Seti

hβ  
для каждой копии базы данных h k∈ …{ }( )1, , .
Шаг 1. Для каждой копии базы данных дилер от‑
правляет на облако множества Seti

hβ .
Шаг 2. Для запрошенных номеров битов облако 
возвращает дилеру значения битов из второго 
столбца матрицы G hβ , где h k∈ …{ }1, , ). Порядок 
возвращаемых значений битов соответствует ис‑
ходному порядку элементов множества Seti

hβ  ■.

5.5. Обработка ответа облака
Алгоритм обработки ответа облака

Вход: snum, значения битов в  том же порядке, 
в  котором передавались номера битов мно
жества Seti

hβ  для каждой копии базы данных 
h k∈ …{ }( )1, , .

Выход: значение бита i.
Шаг 1. Дилер с помощью вектора-строки snum вы‑
бирает нужное значения бита. Остальные значе‑
ния битов отбрасываются.
Шаг 2. Дилер получает значение бита для перво‑
го элемента вектора-строки snum. По построению 
вектора-строки snum запрашиваемый номер явля‑
ется элементом s1.
Шаг 3. Дилер отправляет значение i бита кли
енту ■.

6. ОЦЕНКА ТРЕБУЕМОЙ ПАМЯТИ 
И СЛОЖНОСТИ АЛГОРИТМА

6.1. Объем информации, 
который необходимо хранить дилеру

На протяжении всего времени существования 
базы данных дилер хранит информацию для базы 
данных объема nc:

•	значение db для инициализации дат‑
чиков псевдослучайных чисел PRNG (db, m) 
и PRNG (db, m, j);

•	значения k, dc и lc для датчика псевдослучай‑
ных чисел PRNG (db, m), генерирующего матрицу 
Mβ размера k  ×  dc. Элементом матрицы Mβ яв‑
ляется случайная перестановка целых чисел от 0 
до lc – 1;

•	значения k, du, lu и l* для датчика псевдослу‑
чайных чисел PRNG (db, m, j), генерирующего ма‑
трицу Mσ размера l* × du. Элементом матрицы Mσ 
является случайная перестановка целых чисел от 
0 до lu – 1.

Объем хранимой дилером информации много 
меньше n.
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6.2. Характеристики предложенной схемы
В  данной схеме рассматривается активный 

противник, работающий по протоколу. Про‑
тивник имеет доступ к  базе данных на облаке, 
к каждой ее копии, к каналам связи на облаке, 
может создавать фальшивых клиентов, работаю‑
щих по протоколу. То есть противник не только 
пассивно наблюдает, но и  сам может произво‑
дить запросы с помощью созданных фальшивых 
клиентов, т.  е. производит атаку с  известными 
открытыми запросами. Противник не имеет до‑
ступа к дилеру.

6.3. Основные результаты
Под коммуникационной сложностью для 

предложенной схемы будем понимать общее ко‑
личество пересылаемых битов, необходимых для 
обмена информацией между дилером и облаком. 
То есть сумму числа битов, отправляемых диле‑
ром на облако и числа битов, получаемых от об‑
лака дилером, необходимых для нахождения ди‑
лером значения бита, запрашиваемого у  дилера. 
Пусть s – число битов для представления номера 
бита. Напомним, что l* является мощностью мно‑
жества Seti.

Утверждение 1. Коммуникационная сложность 
схемы получения значения номера бита дилером 
без раскрытия его номера равна l*(s + 1) битов.

Доказательство. Для запроса значения бита 
дилер посылает копиям базы данных l* номеров 
битов длиной s каждый. Облако отвечает l* би
тами ■.

Проанализируем вероятность угадывания 
противником номера запрашиваемого бита.

Если запросы выполнены к  одному множе‑
ству, то они неразличимы. Таким образом, ес‑
ли противник совершает n или более запросов, 
он  не узнает номер конкретного бита. Макси‑
мум, какую информацию противник может по‑
лучить  – такое подмножество множества Seti, 
что при запросе к  каждому элементу из подм‑
ножества, на облаке осуществляется доступ ко 
всем битам из множества Seti и  только к  ним. 
Что будет означать, что противник не знает, 
а  только угадывает, какой именно бит из Seti 
был выбран.

Утверждение 2. При однократной атаке с  из‑
вестным открытым запросом номера бита 
i  и  предположении о  наличии пассивного про‑
тивника на облаке вероятность угадывания про‑

тивником номера бита не более 1

l*
.

Доказательство. Множество Seti состоит из l* 
элементов и  для любого j Seti выполняется 
Seti = Setj. То есть существует одинаковое множе‑
ство для l* различных номеров битов. Таким обра‑
зом вероятность угадывания номера из множе‑
ства Seti равна 1

l*
, так как Seti имеет мощность l* ■.

Сделав n или более запросов, противник по‑
лучит информацию о числе реальных битов в ка‑
ждом множестве Seti. Число этих битов будет 
меньше или равно l*. Таким образом, противник 
понимает, что запрошенный клиентом номер на‑
ходится среди истинных номеров битов. И веро‑
ятность того, что клиент запрашивал конкретный 
номер реального бита для всех реальных номеров 
битов из  одинаковая.

Для того чтобы оценить вероятность угадыва‑
ния конкретного номера бита из множества Seti, 
необходимо посчитать среднее число истинных 
битов, попадающих в множество Seti.

Мощность множества X c равна nc, где элемен‑
там множества X соответствует n (n < nc) элемен‑
тов. Из множества X c выбирается l* элементов. 
В этом случае возникает вопрос: сколько элемен‑
тов N из случайной выборки мощности l* в сред‑
нем соответствует элементам множества X?

Пусть Pr  – вероятность получения в  выборке 
мощности l* ровно r элементов, соответствующих 
элементам множества X. Тогда Pr находится по 
формуле

	 P
C C

C
r

n
r

n n
l r

n
l

c

c

= −
−*

*
.

Тогда среднее число истинных битов, попада‑
ющих в множество Seti, 

	 N rP
r

l

r=
=
∑

1

*

.

Утверждение 3. При атаке с  неограниченным 
числом известных открытых запросов и предпо‑
ложении о  наличии пассивного противника на 
облаке вероятность угадывания номера бита про‑
тивником в среднем не более 1

N
.

Доказательство. Выполнив nc запросов, про‑
тивник определяет элементы, входящие в каждое 
множество Seti. Если фиктивные клиенты будут 
выполнять любое количество запросов большее 
nc, противник все равно не получит никакой до‑
полнительной информации.

Количество реальных бит, которые попали 
в каждую выборку мощности l* в среднем равно N. 
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Тогда вероятность угадывания номера i в среднем 
будет не более 1

N
 ■.

Утверждение 4. При атаке с  неограниченным 
числом известных открытых запросов и предпо‑
ложении о  наличии пассивного противника на 
облаке вероятность угадывания номера бита про‑
тивником будет не более 1

1l* −
.

Доказательство. По построению гиперкубы, 
соответствующие интервалам, заполняются та‑
ким образом, что добавленные фиктивные но‑
мера битов добавляются только в интервал с но‑
мером l*. Предположим, что l*  –  1 гиперкубов, 
соответствующих интервалам заполнены номе‑
рами битов, а  интервал с  номером l* заполнен 
только фиктивными битами.

В этом случае противник, выполнив любое ко‑
личество запросов, определит номер фиктивного 
бита из интервала с номером l*, поскольку из каж‑
дого интервала выбирается только один бит для 
построения множества Seti. Следовательно, при 
любом количестве запросов вероятность угадыва‑
ния номера бита противником будет не более 

1

1l* −
 ■.

Значение k по сравнению с n мало. Докажем, 
что предложенный протокол удовлетворяет усло‑
вию лаконичности.

Как было сказано ранее, для того чтобы ком‑
муникационная сложность не возрастала, нужно 
подобрать значения du и lu так, чтобы минимизи‑
ровать разность L Lp p− − . Это следует из того, что 

l
n

Lp
=  и  l

n

Lp

* =










−
, тогда l*  ≈  l, следовательно 

l*  n.
Теорема 1. Для предложенной схемы организа‑

ции базы данных размера n:
•	Коммуникационная сложность запроса рав‑

на l*(s + 1) битов.
•	При однократной атаке с известным откры‑

тым запросом номера бита i  и  предположении 
о наличии пассивного противника на облаке ве‑
роятность угадывания противником номера бита 
не более 1

l*
.

•	При атаке с  неограниченным числом из‑
вестных открытых запросов и  предположении 
о  наличии пассивного противника на облаке 
вероятность угадывания номера бита противни‑
ком в среднем не более 1

N
.

•	При атаке с  неограниченным числом из‑
вестных открытых запросов и  предположении 
о наличии пассивного противника на облаке ве‑
роятность угадывания номера бита противником 
будет не более 1

1l* −
.

Доказательство. Из Утверждения 1 следует, 
что коммуникационная сложность запроса равна 
l*(s + 1) битов.

Из Утверждения 2 следует, что при однократ‑
ном запросе номера бита вероятность угадывания 
номера равна 1

l*
.

Из Утверждения 3 следует, что при любом чис‑
ле запросов номеров битов фиктивными клиента‑
ми и наличии противника на облаке вероятность 
угадывания номера бита в среднем не более 1

N
.

Из Утверждения 4 следует, что при любом чис‑
ле запросов номеров битов фиктивными клиен‑
тами и  наличии противника на облаке вероят‑
ность угадывания номера бита противником 
будет не более 1

1l* −
 ■.

7. ОЦЕНКА ГЕНЕРИРУЕМОЙ 
ДИЛЕРОМ ИНФОРМАЦИИ

Напомним, что n =  l d, l nd= . По приведен‑
ным выше построениям d – размер гиперкуба, 
а l – длина его стороны. Для минимизации вы‑
числений дилером необходимо минимизиро‑
вать размер вычисляемых матриц Mβ и  Mσ. 
Для этого надо минимизировать размер строки 
каждой из матриц, т. е. величины d l l nc c c c

dc=( ) 
и d l l nu u u u

du=( ).
Рассмотрим функцию f x n xx( ) = ⋅  описыва‑

ющую соотношение между длиной стороны 
гиперкуба и его размерностью. Исследуем функ‑
цию f (x) для того, чтобы минимизировать раз‑
мер генерируемой дилером информации. Заме‑
тим, что x ≥ 1.

По известной формуле a
a

x
ax

x1
1

2










′
= − � ln  най‑

дем производную функции  f (x):

	
′ ′( ) =










′
=









′

+ =

= −





+

f x n x n x n x

n n
x

x n

x x x

x x

1 1 1

1

2

1
1

ln == −





n
n

x
x
1

1
ln

.
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Производная равна нулю в точках экстремума. 
Найдем координату x точек экстремума. По‑

скольку n x
1

0> , приравняем к  нулю второй со
множитель:

	 1 0− =lnn
x

.

Тогда
	 lnn

x
= 1,

	 x n= ln .
Теперь выясним, эта точка экстремума мини‑

мум или максимум:
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Таким образом, минимум функции 
f x n xx( ) = ⋅  находится в точке x = ln n. Следова‑
тельно, минимальное количество элементов ма‑
триц Mβ и Mσ, которое должен генерировать ди‑
лер, достигается при x =  ln n. Величина x должна 
быть целым числом, поскольку число разрядов 
и основание системы счисления должны быть це‑
лыми числами.

Выбор é x ù или ë x û влияет на число интервалов 

l
n

Lp

* =










−  L lp u

du− =( ). Если интервал содержит 

большее число элементов, то l* уменьшается, 
в противном случае l* увеличивается. Величина l* 
влияет на коммуникационную сложность.

8. СРАВНЕНИЕ 
С РАНЕЕ ПРЕДЛОЖЕННЫМИ 

АЛГОРИТМАМИ
Коммуникационная сложность предложенно‑

го алгоритма равна l*(s + 1).
На практике для рассматриваемой базы дан‑

ных размера 240 число бит для представления но‑
мера s – не более 40 битов ≤ 26 (биты нумеруются 
с нуля).

В  [2] коммуникационная сложность равна 
l̂ d ! Len(K, Kenc), где Len(K, Kenc)  – сумма длин 
шифротекстов. На практике d ≤ 4.

По построению интервалов:
l* ≤ 210;
l̂  ≤ 210.
Для широко используемых алгоритмов веро‑

ятностного шифрования (AES, RSA) Len(K, Kenc) 
не менее 128 + 128 = 256 бит (28).

Сравним l* и l̂  · d ! ·, l* ≤ 210, l̂ d ! ≤ 210 · 25.
На практике:
•	коммуникационная сложность предложен‑

ного алгоритма: l*(s + 1) = 210 · 26;
•	коммуникационная сложность алгоритма 

из [2]: 210 · 24 · 28 < l̂ d ! Len(K, Kenc) < 210 · 25 · 28.
Напомним, что вероятность угадывания при 

однократном запросе с использованием переста‑
новок:
	 1

l*
=

1

210 .

С использованием шифрования при d = 4:

	 1 1

2 210 5ld !
�≥

⋅
.

Увеличим l* (пусть l*  =  215), чтобы вероят‑
ность угадывания при однократном запро‑
се была одинаковая в  ранее рассмотренном 
и предложенном алгоритме. В этом случае ком‑
муникационная сложность предложенного ал‑
горитма равна:
	 l*(s + 1) = 215 · 26.

Таким образом, при заданных параметрах 
на практике при аналогичной вероятности уга‑
дывания коммуникационная сложность пред‑
ложенного алгоритма по крайней мере в  2 раза 
лучше.

Оценим объем памяти, которую необходимо 
генерировать дилеру на практике. Поскольку ми‑
нимум функции f x n xx( ) = ⋅  находится в  точке 
x = ln n, определим целочисленное значение x для 
n = 240. Если выбрать x = 28 то основание системы 
счисления n28 3⊕ , если выбрать x = 27, то основа‑
ние системы счисления n27 3⊕ . В обоих случаях 
перестановка выполняется для последовательно‑
сти чисел из 3 элементов и от выбора целой части 
x не зависит. Но размерность гиперкуба зависит 
от выбора целой части x. Если размерность гипер‑
куба больше, то l* будет меньше, если размерность 
гиперкуба меньше, то l* будет больше. Как было 
показано выше, если l* увеличивается, то умень‑
шается вероятность угадывания, но увеличивает‑
ся коммуникационная сложность и  наоборот. 
Выбор целой части x зависит от цели: уменьшить 
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вероятность угадывания или уменьшить комму‑
никационную сложность.

Таким образом, для рассматриваемых параме‑
тров число перестановок будет 28 и длина пере‑
становки равна 3. Для n = 240 нужно генерировать 
28 · 3 = 84 элемента для вычисления нового номера 
при запросе к облаку.

При генерации множества Seti после получе‑
ния нового номера в  интервале память дилера 
освобождается.

Генерацию перестановок как для всей базы 
данных и интервалов можно выполнять в разных 
потоках. Для каждого из l* интервалов переста‑
новки цифр числа при формировании множества 
Seti могут выполняться параллельно, что увеличи‑
вает скорость работы алгоритма.

9. ЗАКЛЮЧЕНИЕ
Предложенный алгоритм обладает значитель‑

ными преимуществами по сравнению с алгорит‑
мами, описанными в [1, 2].

Алгоритм обладает следующими преимуще‑
ствами:

•	Вместо шифрования номера бита исполь‑
зуются перестановки цифр в  выбранной систе‑
ме счисления. Шифрование и  расшифрование 
номера бита на практике требует большего числа 
операций, чем перестановка разрядов в выбран‑
ной системе счисления.

•	Так как при загрузке БД на облако выполня‑
ется перестановка, то на практике запрос рядом 
стоящих битов чаще всего выполняется для би‑
тов, которые не являются соседними на облаке. 
Это затрудняет противнику поиск стоящих рядом 
запрашиваемых битов.

•	Все сдвиги в  интервалах разные для любо‑
го множества Seti. Это не позволяет сделать вы‑
вод о Setj по Seti. Ранее, в статье [2], использовал‑
ся вектор b, который содержит величину сдвига 
в  интервале для каждого элемента любого мно‑
жества Seti. Если противник угадает вектор b, это 
позволит ему сделать вывод о Setj  по Seti.

Заметим также, что на практике при реализа‑
ции вычислений легко организовать параллель‑
ные процессы, что позволяет увеличить скорость 
выполнения алгоритма.
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trieval) problem. Previously, the authors considered the problem for a database hosted in the cloud in the 
presence of an active adversary who does not interfere with the execution of the protocol, but can carry out 
an attack with known open queries. In algorithms, bit number i  is represented as the l-ary number with a 
number of digits d. An algorithm for placing a database in the cloud and an algorithm for querying the re‑
quired bit using permutations in the digits of the bit number, using the specification of the bit number i in the 
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complexity and probability of guessing the bit number for a one-time attack with a known open request for bit 
number i and for an attack with unlimited number of known open requests were estimated.
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Целью данной работы является развитие технологии сплайн-адаптивных фильтров (САФ) для ре‑
ализации в реальном времени. Предложенный в работе P-САФ на базе рекуррентного штрафного 
P‑сплайна по аналогии с  классическим САФ состоит из линейной динамической и  нелинейной 
статической компонентов. Для адаптации P-САФ разработаны вычислительные схемы с различной 
топологией, что одновременно определяет способ адаптации узлов и вычисления коэффициентов 
сплайна. Это позволило повысить эффективность P-САФ по сравнению с классическим САФ и со‑
кратить вычислительные затраты. Показатель эффективности MSE [dB] для P-САФ при анализе 
модельных и реальных временных рядов оказался на уровне и выше классического САФ.
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DOI: 10.31857/S0132347424060036, EDN: DYUOIY

1. ВВЕДЕНИЕ
В  последние годы возрос интерес научно‑

го и  инженерного сообщества к  нелинейным 
и  адаптивным моделям, а  также к  прикладным 
задачам на их основе. Обоснован подобный инте‑
рес нелинейной природой многих процессов ре‑
альной жизни.

Нелинейные адаптивные модели и  фильтры 
обладают хорошей гибкостью и  высокой произ‑
водительностью [1–3]. Нелинейность моделей 
отражает нестационарную природу процессов, 
а  адаптивность моделей повышает эффектив‑
ность их применения. Вычислительные затраты 
определяются, главным образом, принципами 
адаптации и обучения модели.

Одна из популярных идей при создании нели‑
нейных фильтров основана на обновлении (адап‑
тации) коэффициентов линейных фильтров. 
Наиболее популярные алгоритмы такой адапта‑
ции основаны на методе наименьших квадратов 
и  его модификациях, а  также методе аффинной 
проекции. Первая группа методов имеет неболь‑
шую вычислительную сложность, вторая – хоро‑
шую сходимость.

Другие идеи адаптивного обучения основаны 
на нейронных сетях [5], адаптивных фильтрах 
Вольтерра [4], ядра [7], функциональной свя‑

зи  [8], расширенном фильтре Калмана [6] и  пр. 
Однако подобные фильтры эффективны только 
для объектов со слабой нелинейностью. А значи‑
тельная нелинейность отрицательно сказывается 
на сходимости алгоритмов адаптации и усложня‑
ет вычисления, поскольку связана с увеличением 
порядка модели.

Системы реального времени наиболее требо‑
вательны к быстродействию алгоритмов обработ‑
ки информации и,  соответственно, к  их вычис‑
лительной сложности. Поэтому в  таких системах 
адаптивные модели с  этапом обучения или с  ис‑
пользованием численных методов мало пригодны.

В  этой ситуации возможен подход с  исполь‑
зованием адаптивных сплайнов, интерес к  ко‑
торым возрастает, как к  инструменту нелиней‑
ного моделирования. Сама идея, а также термин 
“сплайн-адаптивный фильтр” (САФ) были введе‑
ны в 2013 г. в работе [9] M. Scarpiniti. Концепция 
САФ включает последовательную комбинацию 
линейного фильтра и  нелинейного алгоритма 
с  функцией адаптации. Нелинейная часть в  ба‑
зовой конструкции представлена интерполяци‑
онным сплайном, структура которого остается 
неизменной. Для интерполяции используются 
базисные сплайны и  сплайны Катмалла–Рома 
с фиксированной матрицей коэффициентов для 
локального звена сплайна.
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Структурно модель САФ относится к  блоч‑
но-ориентированному представлению и  вклю‑
чает линейные и  нелинейные блоки [10, 11]. 
Линейная часть модели является временно-ин‑
вариантной (динамической), а  нелинейная мо‑
дель – статической (рис. 1).

Топология блоков в  САФ также может быть 
различной. Например, модель САФ [9], называ‑
емая моделью Винера, представляет собой ли‑
нейно-нелинейную (ЛН) модель, включающую 
линейный фильтр и  статическую нелинейную 
функцию адаптации. Другая популярная модель, 
известная как Хаммерштейн-модель, является 
нелинейно-линейной (НЛ) моделью, в  которой 
динамический и  нелинейный статический блок 
имеют обратный порядок [12]. Также существуют 
модели, которые комбинируют компоненты ЛН 
и НЛ, обеспечивая гибкость и разнообразие в ра‑
боте с различными типами нелинейностей.

Концепция САФ оказалась довольно про‑
дуктивной и  для теоретических исследований, 
и в прикладных задачах. Разными исследовате‑
лями были разработаны и  изучены различные 
варианты САФ, например, с  использованием 
БИХ‑фильтров [13, 14], для активного контроля 
и  фильтрации разного типа помех [15, 16], для 
негауссовой среды [17, 18]. Ряд работ посвящен 
вопросам улучшения устойчивости, сходимо‑
сти, анализу надежности и производительности 
[18–20].

Тем не менее, несмотря на большое количе‑
ство работ по САФ, существуют определенные 
вопросы относительно его применения на прак‑
тике.

САФ достаточно разработаны теоретически 
и опираются на априорную информацию о свой‑
ствах входных сигналов и помех. При адаптации 
параметров САФ используются градиентные ме‑
тоды оптимизации [11, 18]. Однако в реальной за‑
даче желаемый сигнал часто неизвестен, а целе‑
вая функция обычно мультимодальна. Еще одна 
проблема САФ связана с длительностью машин‑
ного обучения, что затрудняет его использование 
в режиме реального времени.

Целью данной работы является развитие тех‑
нологии САФ для реализации в  реальном вре‑
мени. Для этого использована модификация 

штрафного P‑сплайна, названная здесь Р-САФ. 
В отличие от традиционных P‑сплайнов, вместо 
одного параметра сглаживания, предлагаемый 
Р-САФ позволяет изменять этот параметр в пре‑
делах отдельного звена сплайна. А создание груп‑
пы отсчетов ВР решает проблему выбора узлов 
сплайна.

Другая особенность P-САФ состоит в  эконо‑
мичной вычислительной схеме P-САФ в виде ре‑
куррентных алгебраических выражений, что по‑
зволяет использовать его в реальном времени.

И наконец, модель P-САФ представляет собой 
аналитическое выражение, что повышает интер‑
претируемость моделей на его основе.

2. ОПИСАНИЕ И ТОПОЛОГИЯ Р-САФ
Для реализации САФ в  реальном времени 

предлагается математическая модель в  форме 
рекуррентной сплайн-функции. Именно рекур‑
рентное математическое описание делает воз‑
можным использование САФ в РРВ.

Большинство известных САФ основаны на 
сглаживающих сплайнах, однако также воз‑
можно использование штрафных P‑сплайнов 
и базисных B‑сплайнов [21, 22]. При этом сгла‑
живающие сплайны имеют большую вычисли‑
тельную сложность, что становится проблемой 
при реализации в реальном времени [23]. А, на‑
пример, впервые предложенная в [9] модель САФ 
использует базисные B‑сплайны. Для базисных 
и  штрафных сплайнов оптимальность выбора 
узлов оказывает значительное влияние на слож‑
ность их реализации [24]. И хотя адаптация в ре‑
альном времени является трудоемкой процеду‑
рой, эффективность САФ при этом существенно 
повышается.

В  теории цифровой фильтрации можно вы‑
делить два подхода: цифровой фильтр (ЦФ) 
с конечной импульсной характеристикой (КИХ) 
и  бесконечной импульсной характеристи‑
кой (БИХ). В  САФ, в  основном, применяют‑
ся КИХ‑фильтры. Их достоинствами являются 
линейная фазовая характеристика и  устойчи‑
вость. Эти и другие достоинства КИХ объясня‑
ются отсутствием обратной связи по выходным 
параметрам фильтра.

x (n) КИХ- 
фильтр

Адаптация 
узлов

Сплайн- 
интерполяция

y (n)

Динамическая 
линейная часть

Статическая 
нелинейная часть

Рис. 1. Структура сплайн-адаптивного фильтра.
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Структура БИХ‑фильтров содержит обрат‑
ную связь, что является причиной неустойчи‑
вости и,  нередко, низкой сходимости. Однако 
БИХ‑фильтры, в отличие от КИХ‑фильтров, мо‑
гут обеспечить резкость переходной зоны про‑
пуска и  подавления сигнала при одинаковом 
с КИХ‑фильтрами порядке ЦФ [25].

Одним из способов описания ЦФ является 
разностное уравнение. В данной работе исполь‑
зуется рекуррентная форма штрафного P‑сплай‑
на, полученная с  применением вариационного 
подхода [26]. В классическом варианте сглажи‑
вающий кубический сплайн S(t) может быть 
получен как решение задачи минимизации на 
всем интервале наблюдения [a, b] по отсчетам 
y i ni , , = 1 :

S S S t y
s W a b L a b i i

i

n

λ λ
λ= ′′ + ( ) −







∈  
  =

∑arg min
, ,

2
2 2

2 2

1
 




,	 (1)

где λ – сглаживающий множитель, ассоциирован 
с  параметром регуляризации Тихонова. А  сами 
слагаемые в  (1) определяют соответственно ми‑
нимальную кривизну сплайна и  минимум не
вязок [27]. Кубический сплайн S(t) находится 
среди всех функций из пространства Соболева 
s W a b∈ 2

2[ , ]. Степень гладкости или штраф за 
гладкость сплайна S(t) определяется параметром 
λ. Отсюда и название штрафной P‑сплайн. Диа‑
пазон параметра λ неизвестен и  обычно велик 
[10–9, 109], но при λ → 0 сплайн стремится к интер‑
поляционному.

Для реализации P‑сплайна в РРВ критерий (1) 
модифицирован нами и  адаптирован отдельно 
для каждого i-го звена сплайна:

	 S S S t yh
s W h h L h j

i
j
i

j
ρ ρ

ρ ρ,
, , ,

arg min= −( ) ′′ + ( )−
∈  
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
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Входные данные в (2) собраны в группы по h 
значений y y yi i

h
i

0 1, , ..., { } между крайними отсчета‑

ми группы t ti
h
i

0,   для каждого i -го звена сплайна.
Предлагаемый Р-САФ позволяет изменять 

гладкость в пределах звена с помощью перемен‑
ного параметра гладкости ρ, тем самым повышая 
гибкость нелинейных моделей отдельных зве‑
ньев. В отличие от традиционных P‑сплайнов (1) 
с единым параметром сглаживания ρ.

Вид критерия (2) известен как блочная регуля‑
ризация Тихонова [28], которая в данном случае 

определяет блок, как группу из h отсчетов. Мини‑
мальный размер группы h = 3 (т. е. 4 отсчета ВР) 
определен порядком кубического сплайна. Но 
обычно h > 3 и это означает, что выборка избы‑
точна и это положительно сказывается на равно‑
весии данных для описания нелинейности [10].

Другой особенностью критерия (2) является 
адаптация штрафного параметра ρ в  интервале 
ρ ∈[ , ]0 1 . Нормирование сглаживающего сомно‑
жителя ρ уменьшает сложность его выбора в соот‑
ветствии с физическим смыслом: от максималь‑
ной гладкости при ρ = 0 до интерполирующего 
сплайна при ρ = 1.

Переход от критерия (2) к  функционалу J(S) 
упрощает получение неизвестных коэффициен‑
тов сплайна:

	
J S h t S t dt

S t y t

t

t

k
i

k
i

i

h
i

( ) = −( )( ) ′′ ( )  +

+ ( ) − ( )





∫1 2 2

0

ρ

ρ

∆

22

0k

h

=
∑ .

	 (3)

Шаг дискретизации Δt уравновешивает 
размерности слагаемых, а  сам функционал (3) 
становится безразмерным. Далее Δt  =  1.

Для получения коэффициентов a a a ai i i i
0 1 2 3, , ,    

рекуррентного сплайна Si(τ) на i-м звене
	 S a a a a q h qi

i i i i( ) ,τ τ τ τ τ= + + + − ≤ ≤ −0 1 2
2

3
3  	 (4)

использованы два типа условий:
1)	условия равенства непрерывных произво‑

дных для смежных звеньев сплайна S t S tk
q
i k

q
i( ) ( )( ) ( )+

−
+ −=1

1  
S t S tk

q
i k

q
i( ) ( )( ) ( )+

−
+ −=1

1  позволяют найти рекуррентные соот‑
ношения для непрерывных коэффициентов a ai i

0 1,   
(k = 0, 1) смежных (i – 1)-х и i-х звеньев;

2)	из условия ∂
∂

= ∂
∂

=J S

a

J S

ai i
( ) , ( )

2 3

0 0 найдены раз‑

рывные коэффициенты a ai i
2 3,  .

Математические соотношения для коэффици‑
ентов Р‑сплайна a a a ai i i i

0 1 2 3, , ,    представляют собой 
алгебраические выражения [26] и не требуют до‑
полнительных методов решения (аналитических 
или численных).

Отличительная особенность предлагаемого 
Р‑сплайна (4)  – это возможность сопряжения 
смежных звеньев в  любой точке q tk

i=  внутри 
i-го звена (k h= 0, ) (рис.  2а). Это особенность 
уникальна и  для теории сплайнов с  последова‑
тельным сопряжением звеньев, и для реализации 
в реальном времени со скользящим окном.
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Временные моменты сопряжения сплайна q 
и вычисления τ являются параметрами вычисли‑
тельных схем Р-САФ. И на основе их взаимного 
расположения можно разработать несколько то‑
пологий для вычислительных схем сплайна [29], 
в  том числе последовательной рис.  2б и  мно‑
гократной фильтрации рис.  2в. И  все три схе‑
мы сочетают рекуррентность коэффициентов 
сплайна, что соответствует адаптации линейного 
КИХ‑фильтра в  традиционном САФ, и  локаль‑
ность к группе отсчетов внутри звена.

Наибольший интерес с  позиции РРВ имеет 
универсальная вычислительная схема, показан‑
ная на рис. 2а. Для произвольных значений q и τ 
разностное уравнение ЦФ, соответствующего та‑
кой схеме, представляет собой уравнение с пере‑
менными параметрами, порядок уравнения соот‑
ветствует значению τ [30]. И именно параметры q 
и τ, как параметры топологии, определяют струк‑
турную адаптацию Р-САФ.

Рассмотрим частный случай данной вычис‑
лительной схемы для τ = + = −q q h1 0 1, ,  . Для 
получения разностного уравнения требуется за‑
дание единого временного отсчета, определен‑
ного для каждого i-го звена сплайна. Принципи‑
ально таким моментом может быть любой отсчет 
i-го звена t j hj

i , , = 0 . Здесь выбран момент вре‑
мени t i

τ и далее для этого момента введено обо‑
значение i t i= τ.

Проанализируем компоненты функционала (3) 
относительно выбранного момента. Если введе‑
ны обозначения y y t S S ti

i
i

i= =( ), ( )τ τ , то последо‑
вательности { }, { }, , , ...S y ii i  = 1 2 3  можно рассма‑
тривать, как решетчатые функции с интервалом 
квантования Δt. И для введенных обозначений 
разностное уравнение Р-САФ имеет следую‑
щий вид:

(а)
(і–1)-е звено

i-е звено

Отсчеты ВР

Значения  
сплайна

Момент сопряжения

(б)

(і–1)-е звено
i-е звено

(в)

(і–1)-е звено
i-е звено

Рис. 2. Топология вычислительных схем Р-САФ.
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Разностное уравнение (5) – наиболее простой 
случай разностного уравнения для Р-САФ и со‑
ответствует значениям τ = + =q q1 0,  . Это урав‑
нение первого порядка с постоянными коэффи‑
циентами γ j j, , = 0 4. Если τ > +q 1 и  для всех 
звеньев сплайна τ = const, то разностное уравне‑
ние остается с постоянными параметрами, но по‑
рядок уравнения равен (τ – h). В  данном случае 
коэффициенты γ j j, , = 0 4 разностного уравне‑
ния (5) не зависят от параметров вычислительной 
схемы q и τ, а зависят только от параметров само‑
го сплайна h и  τ. Эти параметры и  определяют 
адаптивные свойства Р-САФ, т. е. участвуют 
в процессе параметрической адаптации.

3. УСТОЙЧИВОСТЬ И ПЕРЕХОДНЫЕ 
ПРОЦЕССЫ P-САФ

Концепция САФ оказалась довольно попу‑
лярной и  это можно объяснить способностью 
цифровых фильтров моделировать нелинейные 
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системы при невысокой сложности самих САФ. 
Однако скорость сходимости САФ остается 
по-прежнему недостаточно высокой [31].

Рекуррентный Р-САФ как математический 
инструмент обработки информации в  РРВ дол‑
жен соответствовать требованиям сходимости, 
устойчивости и точности [32]. Для оценки эффек‑
тивности P-САФ в установившихся и переходных 
режимах целесообразно использовать методы ли‑
нейных динамических систем. Как и в случае лю‑
бого ЦФ для описания P-САФ используется ма‑
тематический аппарат, включающий аппаратную 
и системную функции фильтра.

В отличие от КИХ‑фильтров, обладающих ли‑
нейной фазой и  устойчивостью, БИХ‑фильтры 
могут оказаться неустойчивыми. Поэтому в обя‑
зательном порядке следует анализировать устой‑
чивость рекуррентного сплайн-фильтра в  обла‑
сти изменения его параметров.

На основе z-преобразования правой и  левой 
частей разностного уравнения (5) аналитически 
получена системная функция сплайн-фильтра 
W z S z Y z( ) ( ) ( )=  [31]:
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1 1γ γ

γ γ γ
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которая является аналогом частотной передаточ‑
ной функции (ПФ) непрерывных систем.

И  несмотря на несложный вид системной 
функции, синтез P-САФ непосредственно на его 
основе довольно проблематичен. Альтернатив‑
ным способом синтеза Р-САФ является пред‑
ставление ПФ в  виде соединения элементарных 
звеньев САУ с  прямыми, параллельными или 
каскадными связями [33]. Для этого представим 
системную функцию (6) в традиционном виде от‑
ношения полиномов:
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Тогда структурная схема прямой реализации 
Р-САФ будет выглядеть следующим образом 
(рис. 3).

Обратная связь в  структуре Р-САФ, являясь 
достоинством рекурсивных ЦФ, может привести 
к  его неустойчивости, т.  е. наличию корней ха‑
рактеристического уравнения за пределами еди‑

ничного круга z < 1 . Для оценки областей устой‑
чивости запишем характеристический полином 
ПФ (6) с учетом билинейного w-преобразования. 

И, заменив z
w
w

= +
−

1
1

, получим
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Для уравнения второго порядка (8) критерий 
Гурвица–Мизеса определяет условия устойчиво‑
сти дискретных систем:
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С учетом введенных в (5) обозначений для ко‑
эффициентов γ j j, , = 0 2 разностного уравнения 
устойчивость Р-САФ полностью определяется 
параметрами сплайна h и τ. И для выбранной то‑
пологии вычислительной схемы q = 0, τ = 1 Р-САФ 
устойчив при любых значениях сглаживающего 
параметра ρ ∈[ , ]0 1  при любом размере группы h.

На рис. 4 области неустойчивости не заштри‑
хованы, области абсолютной устойчивости (т.  е. 
при всех значениях ρ ∈[ , ]0 1 ) заштрихованы пол‑
ностью, а  на областях частичной устойчивости 
приведена нижняя граница диапазона ρ при не‑
которых соотношениях h и q. Изменение параме‑
тра топологии q > 0 заметно сужает области устой‑
чивости Р-САФ. Устойчивость наблюдается 
только при стремлении ρ → 1, и сами диапазоны ρ 
весьма малы: [0.99–1], [0.84–1]. И  наконец при 
q → h Р-САФ всегда неустойчив.

yi Si

β0Z
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β1Z
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β2Z
2

β3Z
3

βhZ h–1

Z –1

α0+ α1
Z–1
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Рис. 3. Структурная схема рекуррентного P-САФ.
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При сопряжении смежных звеньев в  нача‑
ле текущего звена (q = 0) Р-САФ всегда остается 
устойчив и при τ > 1. В практических приложе‑
ниях сопряжении в начале звена и используется 
чаще всего.

Также целесообразно оценить сходимость 
Р-САФ на основе косвенных критериев, т. е. ис‑
следовать аппаратную функцию g(t). Известно, 
что аппаратная функция ЦФ является функцией 
веса компонент фильтра во времени. И  по мере 
увеличения длины веса ЦФ резко возрастает вы‑
числительная сложность процессов фильтрации 
и адаптации.

Аппаратная функция g(t) P-САФ была получе‑
на аналитически на основе системной функции 
Р-САФ (6) с использованием обратного преобра‑
зования Фурье.

Являясь аналогом импульсной весовой функ‑
ции непрерывной системы, аппаратная функция 
выражает аналитическую зависимость сигналов 
между входными и выходными сигналами ЦФ на 
основе уравнения дискретной свертки. Визуаль‑
но аппаратная функция Р-САФ несимметрична, 
что типично для БИХ‑фильтров (рис.  5а). А  за‑
тухающий характер подтверждает сходимость 
Р-САФ при изменении параметров сплайна ρ и h.

Однако условие каузальности (g t t( ) ,= <0 0) 
соблюдается только в случае, если Р-САФ работает 
в режиме без задержки, т. е. не имеет запаздывания 
по параметрам топологии вычислительной схемы. 
В других случаях аппаратная функция отлична от 
нуля, что характерно для систем с запаздыванием, 
например, при обработке данных группами.

Системную ошибку ЦФ определяет ширина 
аппаратной функции Δ (рис. 5в). Количественно 
ширина аппаратной функции может быть оцене‑
на следующим соотношением [34]:

	 ∆ = −∞

∞

∫ g t dt

g

( )

( )0
.	 (9)

Как видно на геометрической иллюстрации 
ширина аппаратной функции зависит от пара‑
метров сплайна ρ и  h. Причем ширина умень‑
шается и с ростом сглаживающего множителя ρ, 
и с ростом длины сплайна h. С увеличением чис‑
ла отсчетов звена h полоса пропускания филь‑
тра уменьшается. Соответственно уменьшает‑
ся и  ширина аппаратной функции, что видно 
из рисунка. Гладкость сплайна на выходе филь‑
тра в  таких случаях увеличивается, однако он 
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становится значительно отдален от линии регрес‑
сии, что приводит к  увеличению систематиче‑
ской ошибки. Таким образом, ширина амплитуд‑
ной функции физически интерпретируется как 
фактор, влияющий на точность измерений.

Влияние сглаживающего множителя ρ много 
слабее, чем параметра h. И при h > 15 влияние па‑
раметра сглаживания практически нет.

5. РЕЗУЛЬТАТЫ ЧИСЛЕННЫХ 
ЭКСПЕРИМЕНТОВ

Для оценки эффективности предлагаемого 
P-САФ выполнена серия вычислительных экспе‑
риментов с реализацией в режиме реального вре‑
мени. Численные эксперименты предназначены 
для демонстрации сглаживающих и  фильтрую‑
щих возможностей P-САФ, а также для сопостав‑
ления результатов с другими САФ.

Результаты предложенного P-САФ, основан‑
ного на штрафном сплайне реального времени, 
сравниваются с классическими вариантами САФ 
на основе SAF-LMS [9].

Для проведения исследований в качестве мо‑
дельных и  реальных данных целесообразно вы‑
брать широко известные функции с выраженны‑
ми нелинейностями, которые часто используются 
в подобных исследованиях алгоритмов САФ.

Для оценки эффективности САФ [18] исполь‑
зуется показатель точности, основанный на сред‑
неквадратическом отклонении и  выраженный 
в децибелах:
	 MSE dB E e n  = 



10 10

2log ( ) ,	 (10)

где E[*] – среднее значение; e(n) – разность по‑
лезного и восстановленного сигналов.

Модельные входные сигналы
Все результаты получены путем усреднения 

20  испытаний Монте-Карло. Максимальный 
объем выборки для всех модельных сигналов  – 
30 000 отсчетов.

На рис. 6 представлены результаты эффектив‑
ности предлагаемого Р-САФ для двух наиболее 
популярных примеров в теории САФ. Для рис. 6а 
входной полезный сигнал xn представляет собой 
гауссовский случайный процесс и  генерируется 
соотношением [9]

	 x rx rn n n= + − ⋅−1
21 ν ,

где νn – белый гауссовский шум с нулевым сред‑
ним с единичной дисперсией; r  [0, 1) – коэффи‑
циент, определяющий корреляцию между сосед‑
ними входными отсчетами xn.

Кроме того, ко входным данным добавляется 
независимый белый гауссов шум ξn  с различны‑
ми соотношениями сигнал/шум (SNR = 10, 20, 30, 
40 dB).

Рис.  6б отражает эффективность фильтрации 
процесса, порожденного альфа-стабильным рас‑
пределением, и  для α ≠ 1 имеет следующий вид 
[17, 18]:

	 f t j t t j t( ) exp ( ) tan= − +



























ρ γ β απα 1

2
sign ,

где α  (0, 2] – индекс стабильности, определяю‑
щий выраженность импульса; –1 ≤ β ≤ 1 – индекс 
симметрии; ρ – параметр положения; γ > 0 – па‑
раметр дисперсии. Очевидно, что при α = 2 имеет 
место гуссовский сигнал. И  по аналогии для 
остальных значений α   (0, 2] сигнал называют 
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Рис. 6. Эффективность алгоритма P-САФ в условиях гауссовского случайного процесса.
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негауссовским. В  эксперименте данный сигнал 
является полезным и  для него заданы значения 
параметров α = 1.6, β = 0, ρ = 0, γ = 0.05. Аддитив‑
ная помеха – белый гауссов шум ξn  с различны‑
ми соотношениями сигнал/шум (SNR = 10, 20, 30, 
40 dB).

Кривые MSE  [dB] позволяют оценить общую 
эффективность (MSE  [dB] приближение к  уста‑
новившемуся значению MSE) и скорость сходи‑
мости алгоритмов.

Рис.  6б демонстрирует хорошую эффектив‑
ность P-САФ в  условиях негауссовского вход‑
ного сигнала. Графики MSE  [dB] подтверждают 
сходимость алгоритма к значению установившей‑
ся ошибки при различных соотношениях сиг‑
нал/шум. И  в  установившемся режиме графики 
MSE [dB] асимптотически стремятся к значению 
мощности шума [9]. При заданных уровнях сиг‑
нал/шум (SNR  = 10, 20, 30, 40 dB) они теоретиче‑
ски равны (–10, –20, –30, –40 dB) соответственно.

Однако в  случае гауссовского полезного сиг‑
нала (рис. 6а) графики MSE [dB] довольно далеки 
от теоретических значений поэтому и  алгоритм 
P-САФ имеет значительную установившуюся 
ошибку. Для сравнения на рис.  6а пунктирной 
линией приведена кривая MSE [dB] для классиче‑
ского САФ [13] при SNR = 30 dB. Установившаяся 
ошибка согласуется с мощностью сигнала, но при 
довольно большом числе отсчетов n > 2000 (рис. 5 
в [13]).

Следующим модельным сигналом, часто ис‑
пользуемым при анализе ВР является Доплеров‑
ская функция, определенная на интервале [0, 1]:

	 f t t t
t

( ) ( ) sin ( , )
,

= − +
+







5 1 2 1 0 05
0 05

π .

Аддитивная помеха в  данном случае также 
представлена белым гауссовским шумом ξn  с раз‑

личными соотношениями сигнал/шум (SNR = 10, 
20, 30, 40 dB). На графике (рис. 7а) показан полез‑
ный сигнал (серая линия), смесь сигнала и шума 
(черные точки) и  результат обработки алгорит‑
мом P-САФ (синяя линия) на интервале [0, 1] при 
SNR = 10 dB для 1000 отсчетов ВР. Параметры ал‑
горитма P-САФ приведены на рисунке. В зуми‑
рованной области представлен результат работы 
алгоритма (красная линия) на интервале [0, 0.3] 
при значениях параметров P-САФ h = 3, ρ = 0.5. 
Для подобных сигналов со значительным изме‑
нением и  частоты, и  амплитуды параметры 
P-САФ оказывают существенное влияние на эф‑
фективность его работы. На графике (рис.  7б) 
отображены кривые MSE [dB] для разных значе‑
ний соотношения сигнал/шум при h = 3, ρ = 0.5. 
Сходимость алгоритма подтверждается прибли‑
жением графиков MSE  [dB] к  установившемуся 
значению. Причем скорость сходимости для сла‑
бого шума с  SNR = 40 dB на порядок ниже, чем 
с низким значением SNR = 10 dB.

Реальные временные ряды
В  качестве входных данных использованы 

два реальных набора данных из репозитория 
DaISy [11]. Эта БД содержит большое количество 
реальных статистических данных из разных от‑
раслей: механические системы, биомедицинские, 
промышленные процессы, экологические и др.

Набор данных № 96-008 “Данные о  флаттере 
крыла” содержит 1024 значения. На рис.  8а се‑
рым цветом показана информативная часть ВР – 
512  значений. Флаттер крыла  – это колебания 
крыла самолета во время полета. Характеризуется 
флаттер высокочастотными колебаниями и вли‑
яет на безопасность полета. На рисунке красной 
линией отображена работа алгоритма P-САФ 
при параметрах алгоритма h = 3, ρ = 0.8. При об‑
работке подобных высокочастотных сигналов 
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существенную роль имеют параметры настрой‑
ки P-САФ. Влияние параметров сплайна взаим‑
ное и  сочетанное. В  предложенном алгоритме 
P-САФ параметр ρ в большей степени определяет 
амплитуду восстановленного сигнала, в то время 
как параметр h влияет на частоту. При значении 
h = 3 наблюдается полное совпадение сигналов 
по частоте во всем временном диапазоне: синяя 
линия в диапазоне отсчетов [60÷160], зеленая – 
[250÷350]. Кроме того, на рис. 8б отображено 
влияние размера группы отсчетов h на точность 
восстановления сигнала. Очевидно, что точность 
повышается при уменьшении параметра h.

Еще один набор данных из репозитория DaISy 
№ 96-004 “Данные шаровой установки SISTA (си‑
стема оценки информационной безопасности)” 
содержит 1000 значений ВР. На рис.  9а исход‑
ный набор данных показан серой линией, а  ре‑
зультат работы алгоритма  – зеленой. Расширяя 
исследования [11], ВР здесь был дополнительно 
исследован в условиях аддитивной помехи в виде 
белого гауссовского шума с различными соотно‑
шениями сигнал/шум (SNR  = 10, 20, 30, 40 dB). 

Рис. 9б показывает хорошую сходимость алгорит‑
ма P-САФ для всех заданных соотношений сиг‑
нал/шум.

При отсутствии шума значение погрешности 
MSE [dB] варьируется в диапазоне (–55, –60) dB 
при различных соотношениях параметров h и ρ. 
И эти значения можно рассматривать как систе‑
матическую погрешность предложенного алго‑
ритма P-САФ для заданного ВР.

6. ЗАКЛЮЧЕНИЕ
БИХ‑фильтры привлекают внимание иссле‑

дователей благодаря широкому спектру при‑
кладных задач при обработке данных в реальном 
времени. Особую актуальность БИХ‑фильтры на 
базе сплайнов приобрели, как инструмент нели‑
нейной обработки, известный, как САФ.

Предложенный в  работе P-САФ на основе 
рекуррентного P‑сплайна по аналогии с класси‑
ческим САФ M.  Scarpiniti [9] состоит из линей‑
ной динамической и  нелинейной статической 
компонент. Для адаптации P-САФ разработаны 
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вычислительные схемы с различной топологией, 
что одновременно определяет способ адаптации 
узлов и  вычисления коэффициентов сплайна. 
Это повышает эффективность P-САФ по сравне‑
нию с классическим САФ и сокращает вычисли‑
тельные затраты.

Был проведен анализ частотных и временных 
характеристик рекурсивного P-САФ, а также из‑
учены условия его сходимости. Установлено, что 
при изменении параметров P-САФ остается низ‑
кочастотным.

Сравнительный анализ предложенного P-САФ 
c другими САФ выполнен с  использованием 
модельных и  реальных данных из репозитария 
DAISY. Значения показателя MSE [dB] для P-САФ 
оказались на уровне и выше классического САФ 
в  случае высокочастотных детерминированных 
или реальных сигналов. В  этом и  проявляется 
преимущество P-САФ: короткая рекурсивная 
часть и наличие аналитической модели.
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Оптимизационные задачи поиска в дискретном пространстве и, в частности, бинарном, где пере‑
менная может принимать только два значения, имеют большое прикладное значение. В статье пред‑
лагается новый популяционный алгоритм дискретной оптимизации, основанный на распределени‑
ях вероятностей переменных. Распределения определяют вероятность выбора дискретных значений 
переменных при поиске и  формируются с  помощью трансформации целевых значений решений 
в их весовые коэффициенты. Работоспособность алгоритма оценивалась на унимодальных и муль‑
тимодальных тестовых функциях с бинарными переменными. Результаты эксперимента показали 
высокую эффективность предлагаемого алгоритма на оценках сходимости и стабильности.
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1. ВВЕДЕНИЕ
Решение задач оптимизации является необхо‑

димостью практически во всех сферах жизнедея‑
тельности человека. Настоящая работа сосредо‑
точена на комбинаторной оптимизации, которая 
занимается проблемами нахождения оптимума 
с дискретными значениями возможных решений. 
Одним из частных случаев этой проблемы явля‑
ется бинарная оптимизация, в  которой элемен‑
ты вектора решения могут принимать только два 
значения. Практическое применение таких задач 
весьма обширно. В области медицины бинарная 
оптимизация применялась для диагностики опу‑
холей головного мозга  [1], нахождения подмно‑
жеств согласованных признаков при прогнозиро‑
вании эффективности реабилитации пациентов 
после коронавирусной инфекции [2], классифи‑
кации сложных заболеваний [3], классификации 
аритмии по электрокардиограмме [4]. В экономи‑
ческой сфере для выбора издателей журналов при 
размещении рекламы  [5], планировании рабо‑
чего процесса [6], планировании выпуска новой 
версии программного обеспечения  [7], проек‑
тировании производственных ячеек  [8]. В  науке 
и технике бинарная оптимизация использовалась 

для нахождения подмножества информативных 
признаков при построении прогностических си‑
стем [9–11], восстановлении нагрузки в первич‑
ных распределительных сетях  [12], диагностики 
неисправности энергосистем [13], решении про‑
блемы позиционирования антенны [14], проекти‑
ровании сварных балок [15], разделение аппарат‑
ного и программного обеспечения во встроенных 
системах  [16]. Так же в  [17] отмечается, что по‑
мимо чисто комбинаторных задач, задачи с  ве‑
щественными числами могут быть представлены 
в двоичном виде и решены в дискретном число‑
вом пространстве.

Для решения задач бинарной оптимизации 
применяют два типа методов. Первый тип – это 
традиционные детерминированные методы оп‑
тимизации, а  второй тип основан на стохасти‑
ческих, недетерминированных алгоритмах. Тра‑
диционными являются методы релаксации, 
Лагранжа, ветвей и границ, целочисленное про‑
граммирование  [18, 19]. Эти методы являют‑
ся трудозатратными и  предназначены для ре‑
шения задач небольших размерностей, что на 
практике встречается очень редко. Кроме того, 
большинство традиционных методов требуют 
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аналитическое задание целевой функции, а так‑
же ее дифференцируемость и  непрерывность. 
Задачи большой размерности с  множеством ло‑
кальных оптимумов значительно ухудшают по‑
иск традиционных методов.

Недетерминированные методы, представляе‑
мые метаэвристическими алгоритмами  [20–23], 
устраняют вышеперечисленные проблемы. В от‑
личие от традиционных методов данные алгорит‑
мы не подвергнуты “застреванию” в  локальных 
оптимумах, в меньшей степени зависят от исход‑
ных отправных точек, не ограничены видом целе‑
вой функции и способны решать оптимизацион‑
ную проблему “черного ящика” [24].

В  [25] доказано, что не существует эвристи‑
ческого алгоритма, который мог бы работать до‑
статочно эффективно для решения всех задач оп‑
тимизации. Разработанные в  настоящее время 
алгоритмы дают удовлетворительные результаты 
при решении некоторых задач, но не всех. Поэ‑
тому в этой области ведутся активные исследова‑
ния, в результате чего предлагаются новые эври‑
стические алгоритмы.

Цель настоящей работы заключается в разра‑
ботке эффективного алгоритма дискретной опти‑
мизации, конкурирующего с популярными алго‑
ритмами в бинарном пространстве поиска.

Основной научный вклад работы представлен 
следующими пунктами.

1.	Разработан новый популяционный метаэв‑
ристический алгоритм оптимизации для поиска 
в дискретном пространстве. Алгоритм использует 
распределения вероятностей для выбора значе‑
ний переменных. Распределения формируются 
с  помощью трансформации целевых значений 
решений в весовые коэффициенты.

2.	Эмпирически доказана эффективность 
предложенного алгоритма для поиска в бинарном 
пространстве с  помощью критериев сходимости 
и  стабильности. Статистический тест Уилкок‑
сона показал значимое преимущество предлага‑
емого алгоритма по сравнению с  генетическим 
алгоритмом и  алгоритмом роящихся частиц для 
оптимизации унимодальных и мультимодальных 
тестовых функций.

Остальная часть статьи организована следую‑
щим образом. В п. 2 рассмотрены подходы и ме‑
тоды решения задач бинарной оптимизации с по‑
мощью метаэвристических алгоритмов; в  п.  3 
представлен новый алгоритм и детали его работы; 
в п. 4 описана экспериментальная часть исследо‑
вания; в п. 5 обсуждены полученные результаты; 
в заключении сделаны выводы о проделанной ра‑
боте.

2. БЛИЗКИЕ РАБОТЫ 
ПО ТЕМЕ ИССЛЕДОВАНИЯ

Наиболее популярные алгоритмы бинарной 
оптимизации относятся к  алгоритмам роевого 
интеллекта. Подобно эволюционным они осно‑
ваны на механизмах природы и  представляют 
собой модель скоординированного поведения 
объектов, которые могут быть представителя‑
ми флоры, фауны или физическими объектами. 
Эволюционные вычисления основаны на конку‑
ренции и естественном отборе, тогда как роевой 
интеллект опирается главным образом на сотруд‑
ничество агентов [26].

Большинство алгоритмов роевого интеллекта 
разработаны для непрерывной оптимизации и для 
того чтобы осуществлять поиск в бинарном про‑
странстве применяются механизмы адаптации, 
называемые бинаризацией  [27]. Самым попу‑
лярным методом бинаризации является исполь‑
зование трансформационных функций, которые 
переводят непрерывные значения элементов век‑
торов решений в  значения из диапазона  [0, 1]. 
Затем применяется правило бинаризации, при 
котором решение преобразуется в бинарное зна‑
чение из множества {0, 1}. С помощью функций 
трансформации были адаптированы алгоритмы 
роящихся частиц  [17, 28], искусственных водо‑
рослей [29], шимпанзе [30], роя сальпов [31], стаи 
китов  [32]. В  [28] были исследованы различные 
варианты функций трансформации для алгорит‑
ма роящихся частиц. Лучшая сходимость была 
достигнута алгоритмом с  V‑образной функцией 
трансформации.

Метод бинаризации на основе модификации 
алгебраических операций преобразует веще‑
ственные операторы, используемых в  формулах 
перемещения частиц, в  их логические аналоги, 
что позволяет оперировать бинарными решени‑
ями. Например, вместо сложения используется 
операция дизъюнкции, а  вместо умножения  – 
конъюнкция. С  помощью данного метода были 
адаптированы алгоритмы роящихся частиц  [33], 
мозгового штурма [13], роста деревьев [34], лету‑
чих мышей [33], непрерывной муравьиной коло‑
нии [5], кукушкин поиск [35], черной дыры [36].

Квантовый метод бинаризации тоже пре‑
образует операторы непрерывного алгорит‑
ма. В  этом методе каждое допустимое решение 
имеет позицию и вектор квантования, который 
содержит вероятности принять значение 1 для 
соответствующего элемента решения. Вектор 
квантования обновляются с  учетом положений 
глобальных и  локальных лидеров. Используя 
данный метод, были адаптированы алгоритмы 
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роящихся частиц  [37], искусственных водорос‑
лей [7], гравитационный поиск [38], муравьиной 
колонии [39].

Среди алгоритмов эволюционного интел‑
лекта для бинарной оптимизации широко при‑
менялся генетический алгоритм [40–42]. Также 
были предложены его модификации, так, напри‑
мер, в работе [43] представлен гибрид на основе 
генетического алгоритма и алгоритма роящихся 
частиц. Сначала оба алгоритма находят реше‑
ния независимо друг от друга, а затем результаты 
объединяются с  помощью метода средневзве‑
шенной комбинации. После этого применяется 
локальный поиск для нахождения окончатель‑
ного решения.

Оценка эффективности алгоритмов в  боль‑
шинстве исследований проводилась при реше‑
нии определенных прикладных задач. Для объ‑
ективной оценки работы алгоритмов применяют 
тестовые функции, которые позволяют опреде‑
лить эффективность при нахождении оптимума 
различных целевых функций, например, уни‑
модальных, мультимодальных, овражных, раз‑
рывных, выпуклых, вогнутых. При бинарной 
оптимизации применяют тестовые функции для 
поиска в  непрерывном пространстве. Бинарное 
пространство поиска образуют путем дискрети‑
зации непрерывного и  последующим бинарным 
кодировании дискретных значений  [28, 44–46].

3. НОВЫЙ ДИСКРЕТНЫЙ 
АЛГОРИТМ ОПТИМИЗАЦИИ

В  настоящей работе рассматривается про‑
блема оптимизации, в  которой минимизирует‑
ся критерий эффективности. В  данном разделе 
представлен оригинальный дискретный метаэ‑
вристический алгоритм оптимизации на основе 
распределения вероятностей с  трансформацией 
целевых значений (Probability Distributions with 
Transformation of target values, PDT). Алгоритм 
является итерационным, где на каждой итера‑
ции формируется вероятностная модель. Модель 
определяет вероятность появления конкретного 
дискретного значения переменной. Вероятно‑
сти формируются на основе частоты появления 
дискретного значения каждой переменной сре‑
ди решений популяции, причем меньшее значе‑
ние целевой функции должно увеличивать вклад 
решения в  повышение вероятности. Для этого 
вводятся трансформационные функции, кото‑
рые переводят значение целевой функции реше‑
ния популяции в весовой коэффициент. На рис. 1 
представлена блок-схема алгоритма.

На этапе инициализации определяется началь‑
ная популяция решений Pop случайным или иным 
образом. Далее рассчитываются весовые коэф‑
фициенты решений популяции w. Весовой коэф‑
фициент принимает значение из диапазона [0, 1], 
чем меньше целевое значение решения, тем боль‑
ше значение w. Для того чтобы сформировать ве‑
совые коэффициенты из целевых значений пред‑
лагается использовать функции трансформации. 
В качестве таких функций, например, могут быть 
использованы следующие: TL – линейная функ‑
ция, TS – сигмоида, TQ – квадратичная функция, 
TTh – гиперболический тангенс. Графики функ‑
ций представлены на рис. 2. Область определения 
функций ограничена отрезком [fmin, fmax], где fmin 

Начало

Инициализировать популяцию и вычислить 
целевые значения

Вычислить весовые коэффициенты  
решений популяции

Вычислить распределения вероятностей

Сгенерировать новые решения

Изменить новые решения (мутация)

Вычислить целевые значения популяции

Обновить популяцию

Достигнуто число
итераций?

Извлечь из популяции лучшее решение

Конец

Нет

Да

Рис. 1. Блок-схема алгоритма.
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и  fmax – минимальное и максимальное значение 
целевой функции в  популяции соответственно, 
а  f – текущее значение. Аналитические выраже‑
ния функций трансформации показаны ниже:

	 T f
f f

f fL ( ) = −
−

max

max min
,

	 T f
e

s f f f f
( ) =

+ −( ) −( )−( )
1

1 10 5min max min
,

	 T f
f f

f fQ ( ) = −
−







min

max min

2

,

	 T f
f f

f fTh ( ) = −
−

−














th 4 1min

max min
.

После получения весовых коэффициентов 
решений рассчитываются распределения веро‑
ятностей. Каждое распределение состоит из ве‑
роятностей получить переменной определенное 
дискретное значение. Вероятности рассчитыва‑
ются на основе значений переменных и весовых 
коэффициентов решений.

С помощью полученных распределений гене‑
рируется новая популяция и  подвергается мута‑
ции, чтобы предотвратить преждевременную схо‑
димость. Далее популяция обновляется лучшими 
решениями текущей и  новой популяции. После 
этого снова рассчитываются весовые коэффи‑
циенты решений, и  продолжается новый цикл. 
По  завершении заданного количества итераций 
из популяции выбирается лучшее решение.

Ниже представлено пошаговое описание алго‑
ритма.

Вход: Установить размер популяции N, чис‑
ло итераций MaxIter, вероятность мутации pa 
и функцию трансформации T. Обозначим ljk k-е 
дискретное значение j-й переменной.

Выход: R – найденное решение.
Начало
Шаг 1. Инициализация.
Случайным или иным образом сгенерировать 

популяцию решений Pop =  [Pop1, Pop2, …, PopN] 
и вычислить соответствующее целевое значение f 
= [f1, f2, …, fN].

Шаг 2. Инициализировать счетчик итераций 
t = 1. Начало итерационного процесса.

Шаг 3. Вычислить весовые коэффициенты 
решений популяции Pop с  помощью функции 
трансформации T :

	 w T fi i= ( ),
где i = 1, ..., N.

Шаг 4. Вычислить распределения вероятно‑
стей.

Для каждого дискретного значения k перемен‑
ной j определить сумму весовых коэффициентов 
решений Pop, которые принимают данное дис‑
кретное значение k. Обозначим такую сумму Sjk, 
где j = 1, …, n, k = 1, …, m:

	 S w
Pop l

jk i
ij jk

i

N
= ⋅

=



=
∑

1
01

,
,
если

иначе
.

Вычислить эмпирическую вероятность появ‑
ления k-го значения переменной j:

	 P
S

S
jk

jk

jk
k

m
=

=
∑

1

.

Шаг 5. Сгенерировать новые решения.
Формируется популяция новых решений 

Popnew на основе вероятностей P каждой перемен‑
ной:
	 Pop lij jk

new = ,

где k удовлетворяет условию pk–1 < rand (0,1) ≤ pk,

	 p P P P Pj j j jmk
m= +



=∑0 1 1 2 1, , , , ,

j = 1, …, n, k = 1, …, m.
Шаг 6. Изменить новые решения (Мутация).
Изменить значения элементов векторов ре‑

шений Popnew с вероятностью pa. Новые значения 
выбираются случайным образом из области зна‑
чений элемента вектора решений.

Шаг 7. Вычислить значение целевых функций 
fi

new, где i = 1, …, N, для каждого решения Popnew.

w

1

0.8 

0.6 

0.4

0.2 

0
fmin fmaxf

TL

TS

TQ 
TTh

Рис. 2. Графики функций трансформаций для пере‑
вода целевых значений в веса решений.
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Шаг 8. Обновить популяцию Pop путем вы‑
бора N лучших решений из множества решений 
Pop ∪ Popnew. Обновить значения целевых функ‑
ций fi согласно решениям Pop.

Шаг 9. Проверка остановки алгоритма.
Если t < MaxIter, то t = t + 1 и перейти на Шаг 3, 

иначе перейти на Шаг 10.
Шаг 10. Извлечь в R лучшее решение из попу‑

ляции Pop.
Конец

4. ЭКСПЕРИМЕНТ
В  настоящем разделе представлены экспери‑

менты c разработанным дискретным алгорит‑
мом оптимизации на основе распределения ве‑
роятностей с трансформацией целевых значений. 
Алгоритм тестировался для бинарной проблемы 
оптимизации, т.  е. когда переменные принима‑
ют только два значения. В  экспериментальном 
исследовании использовались восемнадцать раз‑
личных унимодальных и  мультимодальных эта‑
лонных функции, широко применяемых для те‑
стирования алгоритмов оптимизации [28, 44–46]. 
В  табл.  1 представлены их характеристики, а  на 
рис. 3 графики в двумерном пространстве поис‑
ка. Функции f1–f11 являются унимодальными, 
т. е. содержат только один глобальный оптимум. 
Функции f12–f18 являются мультимодальными 
и  содержат один глобальный и  множество ло‑
кальных оптимумов, число которых экспоненци‑
ально растет с увеличением размерности задачи. 
Эксперимент проводился согласно методике ра‑
боты [44].

Реализация алгоритма осуществлялась на язы‑
ке MATLAB в среде программирования MATLAB 
R2022b. Программа доступна по ссылке https://
cloud.tusur.ru/index.php/s/395znYyx87rRoDP. 
Эксперимент проводился на персональном ком‑
пьютере под управлением операционной систе‑
мы Windows 10 с 8 Гб оперативной памяти и про‑
цессором Intel Core i7-12700.

 4.1. Дискретизация непрерывных значений
Поскольку алгоритм является дискретным 

и  оперирует в  эксперименте бинарными векто‑
рами решений, элементы которых принимают 
значение 0 или 1, проводится кодировка веще‑
ственных значений бинарным вектором. Проце‑
дура перевода бинарного вектора решения в зна‑
чения вещественных переменных представлена 
на рис. 4. Данная процедура выполняется всякий 
раз, когда алгоритму необходимо рассчитать зна‑
чение целевой функции. Количество переменных 
в эксперименте 5, количество битов для кодиро‑

вания значения каждой переменной – 15. Таким 
образом, величина бинарного вектора решений 
составляет n = 5 × 15 = 75 элементов. Количество 
дискретных значений, которое может иметь ка‑
ждая переменная, соответствует 215. Эти значения 
определяются с  помощью равномерного кванто‑
вания на диапазоне поиска переменной. Шаг дис‑
кретизации определяется следующим образом:

	 ∆ =
−

−
h

R Rmax min

2 115 ,

где Rmin и Rmax – нижняя и верхняя граница ди‑
апазона значений переменной соответственно. 
Фактически, бинарное значение переменной  – 
это бинарное представление порядкового номера 
дискретного значения на диапазоне  [Rmin, Rmax] 
с шагом дискретизации Δh.

Если переменная x кодируется бинарным век‑
тором [b1, …, b15], то вещественное значение этой 
переменной определяется следующим образом:

	 x R h bi
i

i
= + ∆ ⋅ −

=
∑min 2 1

1

15
.

4.2. Критерии эффективности
Для оценки эффективности работы алгоритма 

применялись два критерия  [47]. Первый оцени‑
вает сходимость алгоритма и определяется сред‑
ним отклонением найденного целевого значения 
от фактического:

	 E
n

f f
run

i
i

nrun

= − ′
=
∑1

1
,

где nrun – количество запусков алгоритма; fi – най‑
денное алгоритмом значение целевой функции 
в i-м запуске; f ʹ – фактическое значения оптиму‑
ма целевой функции. Второй критерий оценивает 
стабильность работы недетерминированного алго‑
ритма и определяется среднеквадратичным откло‑
нением найденного оптимума целевой функции:

	 STD
n

f M
run

i
i

nrun

= −( )
=
∑1 2

1
,

где M – среднее значение целевой функции;

	 M
f

n

i
i

n

run

run

= =
∑

1 .

Меньшее значение обоих критериев соответ‑
ствует лучшему значению эффективности.

Кроме вышеприведенных критериев в работе 
представлены графики сходимости алгоритмов, 
позволяющие оценить скорость сходимости 
стохастических алгоритмов и  показывающие 
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Рис. 3. Графики тестовых функций в двумерном пространстве поиска.

Бинарный  
вектор решения
Binary solution
vector

Вещественный  
вектор решения
Real solution vector

… … … … …

… …… ……

Рис. 4. Перевод бинарного вектора решения в непрерывный вектор для вычисления значения целевой функции.
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Таблица 1. Тестовые функции эксперимента

№ Целевая функция Диапазон поиска Значение оптимума 
функции

1 f xi
i

n

1
2

1
x( ) =

=
∑ [–100; 100] 0

2 f ixi
i

n

2
4

1
x( ) =

=
∑ [–2.56; 2.56] 0

3 f xi
i

n

3
2

1
0 5x( ) = +( )

=
∑ . [–10; 10] 0

4 f ix randi
i

n

4
4

1
0 1x( ) = + ( )

=
∑ , [–2.56; 2.56] 0

5 f xi
n

i5 1x( ) = ( )=max [–100; 100] 0

6 f x xi
i

n

i
i

n

6
1 1

x( ) = +
= =
∑ ∏ [–100; 100] 0

7 f x x xi i i
i

n

7 1
2 2 2

1

1
100 1x( ) = −( ) + −( )



+
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−
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i

n

8
2

1
x( ) =

=
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9 f x i x xi i
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n
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2 2
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2
1 2x( ) = −( ) + −( )−

=
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10 f xi
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i
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1
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=
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11 f x j
j

i
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1
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

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2
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зависимость критерия Е от итерации [28, 44, 45]. 
Значение E, приводимое на графиках, является 
средним значением по запускам алгоритма.

4.3. Выбор функции трансформации 
целевых значений

Для выбора функции трансформации целевых 
значений в весовые коэффициенты решений бы‑
ли использованы следующее функции: TL – ли‑
нейная функция, TS – сигмоида, TQ – квадратич‑
ная функция, TS – гиперболический тангенс.

Алгоритм PDT с  разными функциями транс‑
формации был использован для поиска оптимума 
тестовых функций. Было осуществлено 30 запусков 
на каждой тестовой функции. Полученные значе‑
ния критериев эффективности приведены в табл. 2.

Для улучшения оценки эффективности эво‑
люционных алгоритмов в [47] отмечается, что не‑
обходимо проводить статистические тесты. Недо‑
статочно сравнивать алгоритмы по значениям E 
и STD [48], необходимо провести статистический 
тест, чтобы доказать, что предлагаемый новый 

№ Целевая функция Диапазон поиска Значение оптимума 
функции

15 f x xi i
i

n

15
1

10 2 10x( ) = − ( ) +( )
=
∑ cos π [–2; 2] 0

16 f x
x

ii
i

n
i

i

n

16
2

1 1

1
4000

1x( ) = −






+

= =
∑ ∏cos [–10; 10] 0

17
f e e

n
x

n
xi

i

n

i
i

n

17

0 2 1 1 2
20

2

1 1x( ) = −
∑

−
∑

+
−











 ( )









= =

, cos π
220 + e

[–3; 3] 0

18 f x xi i
i

n

18
1

x( ) = − ( )
=
∑ sin [–15; 15] –50.0929 (при n = 5)

Таблица 2. Оценка эффективности алгоритма PDT с различными функциями трансформации

f
TL TS TQ TTh

E STD E STD E STD E STD
f1 0.000047 0.000000 0.000049 0.000014 0.000047 0.000000 0.000059 0.000034
f2 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
f3 0.402924 0.231313 0.454002 0.280296 0.478528 0.240684 0.498614 0.281871
f4 0.005653 0.004306 0.006070 0.004650 0.005624 0.003659 0.005170 0.003590
f5 0.041098 0.096504 0.030112 0.026176 0.042929 0.140588 0.037639 0.042328
f6 0.015259 0.000000 0.015259 0.000000 0.015666 0.002229 0.015463 0.001114
f7 2.629031 1.500038 2.511857 1.363161 3.214144 1.576402 3.036793 1.573228
f8 0.000001 0.000000 0.000001 0.000000 0.000001 0.000000 0.000003 0.000003
f9 0.885491 0.863594 0.850277 0.472212 0.803704 0.485206 0.835841 0.739384
f10 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
f11 0.000001 0.000000 0.000001 0.000000 0.000001 0.000000 0.000001 0.000002
f12 0.239046 0.613565 0.870265 1.432694 0.885326 2.910895 0.362761 0.898002
f13 0.119874 0.040684 0.149874 0.062972 0.163207 0.071839 0.123821 0.056141
f14 0.057948 0.077372 0.058916 0.059387 0.053028 0.053763 0.033397 0.046236
f15 0.331668 0.603435 0.199166 0.404835 0.398790 0.618058 0.099557 0.303747
f16 0.036349 0.016301 0.028747 0.014743 0.029202 0.015521 0.034756 0.019396
f17 0.000374 0.000041 0.000374 0.000041 0.000367 0.000000 0.000389 0.000069
f18 0.407336 1.540216 0.405125 1.540966 0.610862 1.858916 0.000837 0.003885

Таблица 1. Окончание
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алгоритм представляет собой значительное улуч‑
шение по сравнению с другими существующими 
методами.

Чтобы судить о том отличаются ли статистиче‑
ски значимо результаты работы алгоритма с раз‑
личными функциями трансформации друг от 
друга, был проведен непараметрический стати‑
стический тест Фридмана на уровне значимости 
α = 0.05. Значения асимптотической значимости 
p-value, которые меньше 0.05, можно рассматри‑
вать как убедительное свидетельство против ну‑
левой гипотезы H0 [47].

Тест Фридмана множественных сравнений не 
выявил отклонение гипотезы H0 для обоих кри‑
териев. Гипотеза H0 здесь утверждение об отсут‑
ствии значимых различий между вариантами 
алгоритма с  различными функциями трансфор‑
мации. Асимптотическая значимость для кри‑
терия Е соответствует значению p-value  =  0.757, 
а  для критерия STD значению p-value  =  0.590. 
Таким образом, выбор рассмотренных функций 
трансформации существенно не повлияет на эф‑
фективность работы алгоритма. В  дальнейшем 
будет использоваться линейная функция.

4.4. Параметры эксперимента
Эффективность предлагаемого алгоритма 

PDT оценивалась в  сравнении с  такими попу‑
лярными алгоритмами оптимизации как генети‑
ческий алгоритм (GA) и бинарный алгоритм ро‑
ящихся частиц (BPSO). Алгоритмы выполнялись 
в одинаковых условиях. Общие настройки имели 
следующие значения. Размер популяции  – 30, 

количество итераций – 100, количество перемен‑
ных – 5, число бит на одну переменную – 15, ко‑
личество запусков алгоритма на каждую тестовую 
функцию  – 30. Специфичные параметры алго‑
ритмов GA и  BPSO были установлены в  значе‑
ния, рекомендованные в [28, 45]. Значения спец‑
ифичных параметров приведены в табл. 3.

4.5. Результаты эксперимента
В результате выполнения эксперимента были 

получены значения критериев эффективности 
каждого алгоритма. Данные значения приведе‑
ны в табл. 4. Последняя строка таблицы содержит 
средние значения показателей. На рис. 5 показаны 

Таблица 3. Значения параметров алгоритмов
Алгоритм Параметр Значение

PDT
Функция 
трансформации T

Линейная TL

Вероятность мутации pa 0.05

GA

Вид селекции Рулеточная
Вид скрещивания 
(вероятность)

Одноточечный 
(0.9)

Вид мутации 
(вероятность)

Равномерный 
(0.005)

BPSO

Коэффициенты C1, С2 2, 2
Вес инерции W Линейно 

уменьшается 
с 0.9 до 0.4

Максимальная скорость 6
Функция 
трансформации

V‑образная

Таблица 4. Оценки эффективности алгоритмов

f
GA BPSO PDT

E STD E STD E STD
f1 0.005349 0.028272 27.845964 37.522025 0.000047 0.000000
f2 0.000000 0.000000 0.008293 0.018114 0.000000 0.000000
f3 0.440548 0.254233 0.799580 0.513039 0.402924 0.231313
f4 0.021143 0.046160 0.067826 0.054019 0.005653 0.004306
f5 0.649841 1.354239 5.634938 3.111477 0.041098 0.096504
f6 0.016683 0.004988 4.112874 3.333243 0.015259 0.000000
f7 3.113280 2.491653 4.288055 2.188550 2.629031 1.500038
f8 0.000009 0.000025 0.804053 0.875332 0.000001 0.000000
f9 10.522179 24.073438 1.827357 1.320775 0.885491 0.863594
f10 0.000000 0.000000 0.000166 0.000383 0.000000 0.000000
f11 0.000004 0.000008 0.303480 0.574945 0.000001 0.000000
f12 0.760543 1.068967 0.571626 0.780258 0.239046 0.613565
f13 0.457784 0.259707 0.418610 0.159854 0.119874 0.040684
f14 0.072918 0.062301 0.054331 0.053543 0.057948 0.077372
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f
GA BPSO PDT

E STD E STD E STD
f15 1.227600 1.001766 1.408564 0.734589 0.331668 0.603435
f16 0.042970 0.016959 0.061572 0.021475 0.036349 0.016301
f17 0.000583 0.000525 0.357644 0.145604 0.000374 0.000041
f18 4.935197 6.147513 3.989981 3.238601 0.407336 1.540216
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Рис. 5. Графики сходимости алгоритмов.

Таблица 4. Окончание
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графики сходимости алгоритмов, позволяющие 
оценить скорость сходимости. Графики представ‑
лены в логарифмической шкале по оси критерия 
сходимости, что позволяет более четко отследить 
скорость сходимости алгоритмов на протяжении 
всей их работы.

5. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ
Чтобы определить, значительно ли отлича‑

ются результаты эффективности предлагаемого 
алгоритма от аналогов, воспользуемся парным 
статистическим тестом Уилкоксона  [47]. Нуле‑
вая гипотеза Н0 теста утверждает отсутствие зна‑
чимых различий в оценках эффективности срав‑
ниваемых алгоритмов. В  табл.  5 представлены 
результаты сравнения. Асимптотическая значи‑
мость для критериев Е и STD при сравнении с ге‑
нетическим алгоритмом и  алгоритмом роящих‑
ся частиц соответствует значению p-value < 0.01. 
Сумма отрицательных рангов теста превалирует 
над положительными. Это говорит о том, что зна‑
чения критериев алгоритма PDT статистически 
значимо меньше алгоритмов GA и BPSO на уров‑
не значимости α = 0.01.

Анализ рис.  5 показывает, что на начальных 
итерациях скорость алгоритма роящихся ча‑
стиц для тестов f6, f7, f9, f15 и f16 оказывается выше 
остальных алгоритмов, но начиная, примерно, 
с пятнадцатой итерации она спадает. В целом же 
алгоритм на основе распределения вероятностей 
с  трансформацией целевых значений опережает 
по скорости своих конкурентов.

6. ЗАКЛЮЧЕНИЕ
Предложенный дискретный алгоритм на ос‑

нове распределения вероятностей с трансформа‑
цией целевых значений показал статистически 
значимое улучшение показателей сходимости 
и  стабильности, таких как отклонение от опти‑
мума и среднеквадратичное отклонение целевых 
значений. Сравнения проводились с  генетиче‑
ским алгоритмом и  бинарным алгоритмом роя‑
щихся частиц. Для эксперимента использовались 
восемнадцать тестовых унимодальных и мульти‑
модальных функций. В  среднем отклонение от 
оптимума уменьшилось в 4.3 раза по сравнению 

с генетическим алгоритмом и в 10.1 раза по срав‑
нению с бинарным алгоритмом роящихся частиц. 
Полученные результаты говорят об эффективно‑
сти предложенного алгоритма для оптимизации 
в бинарном пространстве.
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В работе рассматриваются технологии оптимизации быстродействия программного обеспечения. 
Методы оптимизации подразделяются на высокоуровневые и низкоуровневые, а также на распа‑
раллеливание. Описываемые методы оптимизации применяются к  программам и  программным 
системам, реализующим разнообразную обработку информации, в  которых неэффективность 
использования аппаратных ресурсов может присутствовать в  большом числе горячих точек. Как 
пример приведен алгоритм классификации и привязки полей в распознанном образе делового до‑
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в применении созвездий особых текстовых точек и модифицированного расстояния Левенштейна, 
В качестве OCR была использована система SDK Smart Document Engine и Tesseract. Описано не‑
сколько способов оптимизации быстродействия функций классификации и привязки содержимого 
документа. Также описана оптимизация быстродействия системы сортировки потока изображений 
деловых документов. Предлагаемые методы оптимизации быстродействия программного обеспе‑
чения пригодны не только для реализации алгоритмов обработки изображений, но и для вычисли‑
тельных алгоритмов, в которых проводится циклическая обработка информации большого объема.
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1. ВВЕДЕНИЕ
Необходимость оптимизации быстродействия 

программ объясняется различными потребностя‑
ми. Требования к  быстродействию может сфор‑
мулировать Заказчик информационной системы 
в техническом задании. Требования к быстродей‑
ствию указываются для конкретных видов ком‑
пьютеров и  конкретных операционных систем. 
Аналогично возникают требования к быстродей‑
ствию для приложений, предназначенных для 
мобильных устройств. Ограничения по времени 
выполнения мобильных приложений связаны 
не только с  ограничением времени реакции, но 
и с ограничениями энергопотребления и нагрева 
мобильного устройства. Существует корреляция 
между быстродействием приложения и  энерго‑
потреблением.

Оптимизация ПО преследует одну или не‑
сколько целей:

•	уменьшение среднего времени исполнения 
программного приложения на некотором тесто‑
вом наборе;

•	уменьшение среднего времени исполнения 
реализованной функции.

2. ПРИНЦИПЫ ОПТИМИЗАЦИИ 
БЫСТРОДЕЙСТВИЯ ПРОГРАММНОГО 

ОБЕСПЕЧЕНИЯ
При разработке программного обеспечения 

(далее – ПО) возможна оптимизация нескольких 
типов:

•	высокоуровневая оптимизация (оптимиза‑
ция алгоритмов);

•	низкоуровневая оптимизация с  исполь
зованием особенностей вычислительной тех‑
ники;

•	параллельное программирование.
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Высокоуровневая оптимизация базируется на 
выборе метода решения задачи, которая должна 
войти в состав разрабатываемой программы. Ал‑
горитм может существенно зависеть от области 
определения, например, уменьшение объема дан‑
ных очевидным образом уменьшает время пере‑
бора. Выбор параметров алгоритма также может 
существенно влиять на сложность. Высокоуров‑
невая оптимизация проводится для упрощенной 
архитектуры компьютера, такой как архитектура 
фон Неймана или Гарвардская архитектура. Под 
архитектурой понимается совокупность поль‑
зовательских характеристик, к  которым относят 
основные устройства и блоки упрощенного ком‑
пьютера, а  также структуру связей между ними. 
С точки зрения разработчика программного обе‑
спечения архитектура компьютера – набор опи‑
саний используемых данных, операций (инструк‑
ций) и их характеристик.

В  высокоуровневой оптимизации возможно 
применение следующих способов:

•	анализ алгоритма (реализация, выбор, об‑
ласть определения, параметризация, правило 
остановки);

•	использование промежуточных данных (ме‑
моизация [1]);

•	представление исходных данных;
•	уменьшение сложности алгоритма (lookup 

table [2], интерполяция);
•	оптимизация циклов (вынос вычислений из 

тела цикла, слияние циклов, loop unrolling).
Низкоуровневая оптимизация, ориентирован‑

ная на аппаратную платформу,  – это совокуп‑
ность технических средств, определяющих среду 
функционирования конкретных программ. Ос‑
новой аппаратной платформы является совокуп‑
ность системной (материнской) платы, централь‑
ного процессора (далее – ЦП) и запоминающих 
устройств. Выполняемая на компьютере програм‑
ма состоит из команд конкретного процессора.

Низкоуровневая оптимизация проводится для 
конкретных процессорных микроархитектур [3], 
таких как:

•	CISC (различная длина машинной инструк‑
ции);

•	RISC (одинаковая длина машинной ин‑
струкции);

•	VLIW (параллельное выполнение несколь‑
ких операций в одной инструкции);

•	суперскалярная архитектура, в  которой ре‑
шение о параллельном исполнении двух или бо‑
лее команд между несколькими устройствами ис‑
полнения принимается аппаратурой процессора 
на этапе исполнения.

Вообще говоря, низкоуровневая оптимизация 
для различных процессорных микроархитектур 
будет различной. Например, различаются мно‑
жества команд SIMD для ЦП ARM и  ЦП Intel. 
Директивы программиста для улучшения парал‑
лельного исполнения инструкций для ЦП архи‑
тектуры VLIW невозможны для ЦП Intel.

Использование параллельного исполнения 
(параллелизации) является эффективным спо‑
собом повышения быстродействия ПО. Парал‑
лельному исполнению способствует такая орга‑
низация вычислительного процесса, при которой 
на одном процессоре попеременно выполняются 
сразу несколько программ, совместно использу‑
ющих один или несколько процессоров и другие 
ресурсы компьютера. Такой способ называется 
многозадачностью. Многозадачность призвана 
повысить эффективность использования вычис‑
лительной системы, при этом могут использо‑
ваться различные критерии эффективности вы‑
числительных систем, например:

•	пропускная способность  – количество за‑
дач, выполняемых вычислительной системой 
в единицу времени в операционных системах (да‑
лее – ОС) пакетной обработки;

•	удобство работы пользователей, заключа‑
ющееся, в частности, в том, что они имеют воз‑
можность интерактивно работать одновременно 
с несколькими приложениями на одной машине 
в ОС разделения времени;

•	реактивность системы – способность систе‑
мы выдерживать заранее заданные (возможно, 
очень короткие) интервалы времени между запу‑
ском программы и  получением результата в  ОС 
реального времени.

Параллелизацию имеет смысл проводить по‑
сле завершения высокоуровневой и низкоуровне‑
вой оптимизации последовательной программы 
или алгоритма. Основой параллелизации являет‑
ся выполнение частей программы на нескольких 
исполнительных устройствах, в качестве которых 
мы будем рассматривать несколько центральных 
процессоров. Формально различают параллель‑
ное выполнение задач приложения на одном ком‑
пьютере и распределенное выполнение несколь‑
ких приложений на нескольких компьютерах 
в локальной сети. Основными подходами к разра‑
ботке параллельных программ являются:

•	последовательное программирование с даль‑
нейшим автоматическим распараллеливанием;

•	непосредственное формирование потоков 
параллельного управления с  учетом особенно‑
стей архитектур параллельных вычислительных 
систем или операционных систем;
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•	описание параллелизма без использования 
явного управления.

3. МЕТОДЫ ОПТИМИЗАЦИИ 
БЫСТРОДЕЙСТВИЯ ПО

Описываемые далее методы оптимизации 
применяются, прежде всего, к программам и про‑
граммным системам, реализующим разнообраз‑
ную обработку информации. То есть мы рассма‑
триваем не программы, в  которых реализуется 
один или несколько математических алгоритмов, 
таких как, например, функции из библиотек 
Eigen или MKL. Иначе класс рассматриваемых 
программ можно охарактеризовать как програм‑
мы, в  которых неэффективность использова‑
ния аппаратных ресурсов может присутствовать 
в большом числе горячих точек.

3.1. Особенности высокоуровневой оптимизации 
быстродействия для реализации проектов 

и разработки продуктов
Описанные в  разделе 2 принципы оптими‑

зации ПО применяются в  различных условиях 
по-разному.

Так, формирование требований к быстродей‑
ствию существенно различается при разработке 
продуктов (API, библиотек, приложений) и  ре‑
ализации проектов (в  том числе систем, подси‑
стем, функциональных модулей). Оба вида разра‑
ботки имеются сходство, для них возможны:

•	использование готовых программных мо‑
дулей;

•	высокоуровневая оптимизация;
•	применение экспертных оценок ускорения.
Однако имеются и  существенные различия. 

Например, план выпуска продукта допускает 
увеличение времени на разработку, связанную 
с созданием новых алгоритмов, которые априори 
должны обладать меньшей сложностью, нежели 
уже реализованные алгоритмы. При разработке 
продуктов необходимо предусмотреть возмож‑
ность постоянного профилирования и  другого 
анализа быстродействия. В  разработке продук‑
тов необходим анализ быстродействия конкури‑
рующих продуктов, на которые следует ориен‑
тироваться. В  реализации проектов требования 
к быстродействию могут быть сформированы за‑
казчиком проекта, но срок реализации и ресурсы 
проекта могут ограничить время, затрачиваемое 
на оптимизацию. В  обоих случаях предусматри‑
вается оптимизация покупных и собственных мо‑
дулей. Оптимизация покупных модулей в  части 
замены или модификации имплементированных 
алгоритмов чаще всего невозможна, но возможно 

управление быстродействием посредством пред‑
ставления данных и выбора параметров вызыва‑
емых методов.

3.2. Профилирование ПО
Во всех случаях необходимо профилирование, 

т.  е. измерение быстродействия пользователь‑
ской программы или частей программы. Целью 
профилирования является исследование быстро‑
действия приложения как в целом, так и состав‑
ляющих его объектах (точках): функциях, циклах, 
строках, инструкциях.

Замеры позволяют анализировать:
•	общее время исполнения приложения;
•	набор горячих точек (hot spots);
•	удельное время каждой точки;
•	количество вызовов точки;
•	степень покрытия программы (доля кода, 

которая была использована при исполнении);
•	загрузку CPU и захват памяти;
•	низкоуровневую статистику о  загрузке 

CPU и  шины доступа к  памяти, кэш-промахах 
и кэш-попадания;

•	степень параллелизма приложения.
Профилированию может подвергаться как от‑

ладочная версия приложения, так и  оптимизи‑
рованная отладочная версия или релизная вер‑
сия с  отладочной информацией. Существенным 
условием профилирования является проведение 
замеров на одном и том же тестовом наборе (дата‑
сете), который может быть как опубликованным 
в открытом доступе, так и собственным. Профи‑
лирование необходимо проводить в  одних и  тех 
же условиях на выбранных платформах, включа‑
ющих аппаратную часть и системное ПО.

Известны несколько методов инструменталь‑
ного профилирования:

•	ручной (проведение замеров времени с по‑
мощью вручную добавленных в  код приложе‑
ния вызовов системных функций, таких как 
std:: clock, или использования методов библиоте‑
ки std:: chrono);

•	семплирование (time-based profiling) – сбор 
статистики о  работе приложения во время про‑
филирования;

•	инструментирование (instrumentation)  – 
сбор детализированной информации о  време‑
ни работы каждой вызванной функции во время 
профилирования.

Достоинством ручного подхода является про‑
стота замеров небольшого числа заранее извест‑
ных точек, недостатки состоят в следующем:

•	необходимость вставки дополнительно
го кода в  программу, что может приводить 
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к появлению не только ошибок, но и наведенных 
эффектов;

•	возможность анализа результата в  тексто‑
вом виде;

•	отсутствие дерева вызовов функций, средств 
автоматического анализа.

В  профайлере, основанном на семплирова‑
нии, периодически собирается информация о со‑
стоянии программы, например, значения счет‑
чиков производительности процессора, значение 
счетчика команд. На основании этих замеров 
проводится подсчет производительности. Метод 
семплирования менее всего влияет на работу ана‑
лизируемого ПО и  полученная информация об‑
ладает малой погрешностью. Основными недо‑
статками таких профайлеров являются:

•	получение неполной информации о  коде;
•	длительное время для сбора реальной ста

тистики.
Метод инструментирования модифицирует 

исполняемый файл ПО для сбора информации 
о выполнении каждой функции, исключая время, 
потраченное на вызываемые функции и обраще‑
ния к операционной системе. Метод инструмен‑
тирования предоставляет больше информации, 
чем метод семплирования, но может существен‑
но замедлить работу профилируемого ПО.

Известно несколько универсальных профай‑
леров, к ним относятся следующие программы:

•	CodeAnalyst;
•	Valgrind;
•	Performance Profiler из среды Visual Studio;
•	Intel VTune.
Все перечисленные профайлеры позволяют 

определять горячие точки программы, локали‑
зовать участки кода, в  которых неэффективно 
используются аппаратные ресурсы, неэффек‑
тивность использования процессора, выявлять 
объекты синхронизации, которые негативно вли‑
яют на производительность программы. Продукт 
Intel VTune предоставляет возможность оценки 
большого числа аппаратных счетчиков и метрик 
для определения критических объектов. Intel 
VTune позволяет в  режиме эмуляции моделиро‑
вать работу определенного процессора, включая 
кэш-память различного уровня с  механизма‑
ми замещения, декодеры и буферы инструкций, 
конвейеры инструкций и другие компоненты ЦП 
и его взаимодействия с памятью.

3.3. Методы низкоуровневой оптимизации 
быстродействия ПО

Основным способом низкоуровневой оптими‑
зации при разработке ПО является выбор параме‑

тров компилятора. Например, для среды Microsoft 
Visual Studio и других компиляторов важнейшим 
параметром является вид оптимизации: без оп‑
тимизации или с оптимизацией быстродействия, 
или с оптимизацией объема программы. Другим 
способом оптимизации быстродействия является 
явное указание архитектуры, позволяющее ком‑
пилятору применять при трансляции инструкции 
выбранного набора команд.

Использование математических библиотек 
также является эффективным средством уско‑
рения вычислений. Компилятор Intel Compiler 
Enable Matrix содержит параметр Multiply Library 
Call, который включает или отключает вызов би‑
блиотеки Matrix Multiply. Широко известна би‑
блиотека Intel MKL, содержащая многочислен‑
ные реализованные и  оптимизированные для 
современных ЦП вычислительные методы.

Разумеется, остается востребованным и  про‑
граммирование на ассемблере или применение 
интринсиков, что, собственно, и  позволяет соз‑
давать библиотеки для быстрых вычислений.

3.4. Подходы к распараллеливанию программ
Основными подходами к  разработке парал‑

лельных программ являются:
•	последовательное программирование 

с  дальнейшим автоматическим распараллелива‑
нием;

•	непосредственное формирование потоков 
параллельного управления с  учетом особенно‑
стей архитектур параллельных вычислительных 
систем или операционных систем;

•	описание параллелизма без использования 
явного управления.

Последовательное программирование с  даль‑
нейшим автоматическим распараллеливанием 
упрощает разработку, позволяя полностью аб‑
страгироваться от возможностей параллелизации 
и  возложить распараллеливание на инструмен‑
тальные средства. Очевидный недостаток этого 
подхода – невозможность достичь максимально‑
го ускорения.

Перечислим некоторые средства автомати‑
ческого распараллеливания с  помощью кросс‑
платформенных многопоточных библиотек для 
языка C++:

•	Qt4 Threads;
•	Intel Threading Building Blocks (TBB).
Достоинством подхода, состоящего в  непо‑

средственном формировании потоков парал‑
лельного управления, является возможность 
получения значительно большего ускорения 
для конкретной вычислительной системы по 
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сравнению с предыдущим подходом. Недостатки 
подхода состоят в следующем:

•	усложнение разработки из-за ручного 
управления собственными процессами и потока‑
ми, в том числе, анализ возможных конфликтов;

•	зависимость от конкретной архитектуры 
многопроцессорного комплекса, что затрудняет 
переносимость на другие платформы.

Упрощение разработки возможно при рас‑
параллеливании с  указанием директив, которые 
указывают компилятору на необходимость распа‑
раллеливании фрагмента исходного кода с предпо‑
лагаемой возможной параллельной реализацией.

При распараллеливании также необходимо 
проводить профилирование для оценки потерь 
времени из-за конфликтов потоков и  неопти‑
мальности использования данных несколькими 
потоками.

4. ЗАДАЧИ РАСПОЗНАВАНИЯ 
И КЛАССИФИКАЦИИ ДЕЛОВЫХ 

ДОКУМЕНТОВ
Распознавание изображений документов с из‑

вестным описанием включает в  себя несколько 
задач, таких как:

•	поиск границ документа;
•	нормализация размера и границ документа;
•	извлечение графических примитивов;
•	распознавание символов и  слов, анализ 

структуры документа;
•	поиск границ и распознавание полей доку‑

мента;
•	постобработка результатов распознавания.
Важнейшими задачами являются классифи‑

кация типа документа (фрагмента документа) 
и  привязки полей (поиск областей документа 
для извлечения заполнения). При анализе рас‑
познанных изображений необходимо учитывать 
ошибки OCR, появляющиеся в  зашумленных, 
осветленных или искаженных образах докумен‑
тов. В  данной работе рассматриваются деловые 
документы, предназначенные для обмена данны‑
ми с  организациями и  физическими личностя‑
ми [4]. Деловые документы характеризуются от‑
носительно простой структурой и ограниченным 
словарем статических текстов.

Мы будем определять документ как совокуп‑
ность полей и статической информации. Структу‑
ра текста делового документа может быть описа‑
на с помощью трех объектов: слово, строка текста 
и  фрагмент текста. Для классификации распоз‑
нанного документа и привязки полей могут быть 
применены текстовые особые точки и  созвездия 
текстовых точек, определенные в [5, 6]. Текстовые 

особые точки являются аналогами геометрических 
особых точек [7, 8]. Слово модели представляет‑
ся последовательностью символов. Распознанное 
слово представляется матрицей альтернатив соот‑
ветствия знакомест символов символам алфавита 
распознавания и рамкой слова.

Для пары текстовых особых точек (ω1, ω2) мо‑
гут быть заданы следующие отношения:

•	ω1  S, ω2  S (ω1  F, ω2  F) – обе текстовые 
точки принадлежат одной строке S или одному 
фрагменту текста F;

•	ω1  S1, ω2  S1 (ω1  F1, ω2  F2) – обе точки 
ω1 и ω2 принадлежат различным строкам S1 и S2 
или различным фрагментам текста F1 и F2;

•	ω1 < ω2 – точка ω1 размещена “перед” точ‑
кой ω2;

•	ω1 ˅ ω2 – точка ω1 размещена “выше” точ‑
ки ω2.

Строка текста является созвездием несколь‑
ких близких друг к другу текстовых особых точек. 
Строки текста могут быть найдены с  помощью 
алгоритмов кластеризации рамок распознанных 
слов. Строка описывается множеством упорядо‑
ченных текстовых особых точек. Для двух строк 
(S1, S2) могут быть заданы следующие отношения:

•	S1  F, S2  F – обе строки текста принадле‑
жат одному фрагменту текста F;

•	S1  F1, S2  F2 – обе строки текста принадле‑
жат различным фрагментам текста F1 и F2;

•	S1 ˅ S2 – cтрока S1 размещена “выше” стро‑
ки S2.

Под привязкой строки мы понимаем установ‑
ление соответствия слов распознанной строки 
с одной из описанных возможных строк. Некото‑
рые точки являются обязательными для привяз‑
ки. При привязке с каждой обязательной точкой 
должно быть отождествлено некоторое распоз‑
нанное слово. Также в  описании строки могут 
присутствовать запрещенные текстовые точки. 
При привязке строки ни одна из запрещенных 
точек не может быть отождествлена с некоторым 
распознанным словом. Остальные текстовые точ‑
ки могут быть отождествлены с  распознанными 
словами при привязке строки, или не быть отож‑
дествленными.

В описании строки для пары текстовых точек 
могут быть заданы ограничения с помощью сле‑
дующих метрик:

•	количество точек в промежутке между двумя 
точками ω1 и ω2;

•	сумма ширин текстовых точек, размещен‑
ных между точками ω1 и ω2;

•	количество строк в промежутке между стро‑
ками, содержащими точки ω1 и ω2;
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•	евклидово расстояние между двумя проек‑
циями рамок точек ω1 и ω2.

Фрагмент текста является совокупностью 
нескольких текстовых строк. В  нашей модели 
предполагается, что в  одном фрагменте строки 
группируются только в  одну колонку. Для двух 
фрагментов (F1, F2) могут быть заданы следую‑
щие отношения:

•	F1  F, F2  F – два фрагмента принадлежат 
текстовому фрагменту F;

•	F1 < F2  – фрагмент F1 размещен “перед” 
фрагментом F2;

•	F1 ˅ F2  – фрагмент F1 размещен “выше” 
фрагмента F2.

Фрагменты текста могут быть созданы с  по‑
мощью алгоритмов анализа структуры текста. 
Разбиение документа на части осуществляется 
на основе его графического строения (разделяю‑
щих прямых, колонок, абзацев и т. п.) под управ‑
лением некоторого описания (шаблона) доку‑
мента [9, 10]. Для разбиения на фрагменты могут 
быть использованы как отрезки, разделяющие 
фрагменты, так и  промежутки между фрагмен‑
тами. Под привязкой фрагмента мы понимаем 
установление соответствия слов и строк фрагмен‑
та с одним из описанных возможных фрагментов. 
Аналогично описаниям строки в описании фраг‑
мента содержатся обязательные, запрещенные 
и обычные строки и слова.

Созвездие задается в  виде последовательности 
упорядоченных точек ω1, …, ωn. Простым случа‑
ем созвездия является последовательность точек, 
принадлежащих одной текстовой строке, в самом 
простом случае это – шингл (последовательность 
слов заголовка документа). Другим случаем созвез‑
дия являются цепи  – последовательность точек, 
пары которых упорядочены отношениями ω1 < ω2 
(простая цепь) или ω1 ˅  ω2 (вертикальная цепь). 
Использование цепей и  созвездий позволяет не 
только находить тип документа, но и детектировать 
фрагменты и строки текста. Последнее позволяет 
сократить объем текста, используемого в  анализе 
текстового объекта, например, в привязке поля.

В работах [5, 6] описан способ привязки полей 
гибкого документа. Привязка строк, параграфов 
и фрагментов документа проводится с помощью 
следующего алгоритма классификации. Задают‑
ся модели допустимых строк M1, M2, …, Mq, ка‑
ждая модель M определена набором текстовых 
особых точек:

	 M
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и параметр dLINK(M) – пороговое значение чис‑
ла привязанных точек для надежной привязки. 
В наборе (1) используются три мешка слов:

•	запрещенные слова W–={W–
1, W–

2, …, Wk–};
•	обязательные слова W+={W+

1, W+
2, …, 

W+
k+};
•	необязательные слова W={W1, W2, …, Wk}.
Вычисляются оценки Δ(S, Mi) соответствия 

моделям каждой из строк S. Оценка Δ (S, Mi) рав‑
няется 0, если:

•	была привязана хотя бы одна точка из мно‑
жества W–(S);

•	не было привязано ни одной точки из мно‑
жества W+(S).

Оценка Δ(S, Mi) равняется 1, если не было при‑
вязано ни одной точки W–(S) и число привязан‑
ных точек W(S) и  W+(S) превосходит dLINK(Mi). 
Если Δ(S, Mi) равняется 1, то строка S считает‑
ся привязанной к  модели Mi.  Точность привяз‑
ки строк зависит от предварительной привязки 
окрестности допустимого размещения строк. По‑
сле привязки строк проводится поиск (прогноз) 
границ полей для последующего извлечения ин‑
формации. Для области каждого поля задаются 
опорные элементы, определяющие прямоуголь‑
ник или многоугольник. Привязка поля проводит‑
ся с  помощью привязанных опорных элементов.

Описанный алгоритм классификации строк 
применяется для классификации документа. 
Классификация образа страницы документа про‑
водится с  помощью привязки точек созвездия 
с учетом заданных отношений между некоторы‑
ми точками.

Отождествление текстовой точки и  распоз‑
нанного слова проводится с  помощью предло‑
женного в  [6] модифицированного расстояния 
Левенштейна (далее  – МРЛ). Механизм отож‑
дествления слов применяется во многих задачах, 
основанных на сравнении слов с алфавитом в ба‑
зе данных [11, 12]. Оригинальное расстояние Ле‑
венштейна [13] между двумя текстовыми строка‑
ми V и  W определяется как минимальное число 
редакционных операций для трансформации V 
в W и вычисляется следующим образом:
	 d DLEV LEVV, W V , W( ) ( )= ,

	 ∀ = ∀ =( ) ( )j ij iD   D  LEV LEV0 0 0 0, , , , 	 (2)

	 D i j i j i j i jLEV LEV LEV LEVmin D  D  D s, , , , , ,( ) ( ) ( ) ( )= − + − + − − +1 1 1 1 1 1 uubstCost v wi i, ,( )( )
	D i j i j i j i jLEV LEV LEV LEVmin D  D  D s, , , , , ,( ) ( ) ( ) ( )= − + − + − − +1 1 1 1 1 1 uubstCost v wi i, ,( )( )
где substCost(vi, wj)  – цена операции замены 
символа vi на символ wj, |V| и |W| – длины слов V 
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и  W.  По умолчанию цена любой из редакцион‑
ных операций равняется 1. В работе алгоритм вы‑
числения расстояния Левенштейна между двумя 
текстовыми строками реализован в полном соот‑
ветствии с рекуррентной формулой (2). В реали‑
зации не применялись методы экономии памяти, 
уменьшающие производительность.

Мы будем считать тождественными слова V 
и W, если dLEV(V, W) < d(V), где d(V) – известный 
порог для слова модели. При распознавании про‑
граммами OCR появляются неединичные ошиб‑
ки распознавания. Поэтому порог d(V) не может 
быть нулевым. Очевидно, что порог d(V) должен 
быть различным для слов различной длины. Для 
учета этого обстоятельства можно использовать 
нормализованное расстояние Левенштейна  [14]:

	 ρLEV
LEV

LEV
V, W

V, W
V W V, W

( ) = ( )
+ + ( )

2d

d
.

При распознавании зашумленных и искажен‑
ных изображений документов возможно появле‑
ние многочисленных ошибок распознавания. Не‑
которые ошибки OCR не являются случайными. 
Ошибочное распознавание образа символа “Х” 
как символа “О” маловероятно. В то же время об‑
раз символа “Ъ” может быть ошибочно распоз‑
нан как символ “Ь” из-за сходства образов “Ъ” и 
“Ь”. Примерами сходных образов для латинского 
алфавита являются пары символов “B8”, “DO”, 
“1I”. Другими словами, некоторые ошибки рас‑
познавания символов случаются чаще, чем дру‑
гие. Для учета этого нужно построить substCost(vi, 
wj) так, чтобы при вычислении расстояния Левен‑
штейна штраф за сходные символы был меньше, 
чем за символы несходные:

•	для одинаковых символов substCost(vi, vi)  =  0;
•	для различных несходных символов 

substCost(vi, wj) = 1;
•	для сходных же символов substCost(vi, wj) = 0, 

либо 0 < substCost(vi, wj) < 1.
Описанная модификация позволяет умень‑

шить расстояние, вычисляемое для слов с ошиб‑
ками в виде сходных символов.

Для некоторых далеких по смыслу слов, на‑
пример, идентификаторов, расстояние Левен‑
штейна между ними является небольшим. Для 
исключения рассмотренных случаев ложного 
отождествления предлагается применять шабло‑
ны слов модели следующего вида:
	 G V b b b m m m e e ek p q( ) = … ⋅ … ⋅ …1 2 1 2 1 2 .

В этих шаблонах заданы обязательные симво‑
лы в начале, в середине или в конце слова. Если 

при сравнении символы распознанного слова 
не удовлетворяют шаблону, то расстояние Ле‑
венштейна увеличивается на заданный заранее 
штраф. Эта модификация позволяет увеличить 
расстояние между словами, различающимися не‑
значительным числом символов, которые явля‑
ются признаками для различия слов.

Штраф при отождествлении может быть на‑
значен за несоответствие длин слов V и W:
	 G V W V W V2 , .( ) ( )= − >� δ

Сходство между словом модели V и  распоз‑
нанным словом W устанавливают по формуле
Sim V, W V, W G V , W G V, WLEV 2( ) ( ) − ( )( ) − ( )( )= d f f�1 2 ,

где f1(G(V), W) – штраф за несоответствие слова 
модели V и распознанного слова W, вычисленный 
с помощью шаблона G(V);  f2(G2(V, W)) – штраф 
за несоответствие длин слова модели V и распоз‑
нанного слова W.

При этом может применяться функция 
substCost(vi, wj), учитывающая ошибки распозна‑
вания для сходных символов. Если штраф отсут‑
ствует (f(G(V), W)  =  0) и  сходных символов нет 
(substCost(vi, wj) = 0 или substCost(vi, wj) = 1), то 
Sim(V, W) совпадает с расстоянием Левенштейна 
dLEV(V, W). Сходство Sim(V, W) также может быть 
нормализовано аналогично ρLEV(V, W).

Предложенные модификации расстояния Ле‑
венштейна позволяют уменьшить число совпа‑
дений слов, которые нельзя отождествлять, и од‑
новременно увеличить число совпадений слов, 
в которых имеются несущественные ошибки рас‑
познавания.

5. ОПТИМИЗАЦИЯ РЕАЛИЗОВАННЫХ 
АЛГОРИТМОВ КЛАССИФИКАЦИИ 

И ПРИВЯЗКИ ДЕЛОВЫХ ДОКУМЕНТОВ
Реализацию описанных алгоритмов класси‑

фикации и  привязки, основанных на отождест‑
влении слов, мы рассмотрим в качестве объекта 
оптимизации быстродействия.

Высокоуровневая оптимизация быстродей‑
ствия алгоритмов классификации и  привязки 
основана на создании описания структуры стра‑
ницы документа и соответствующих фрагментам 
документа созвездий. При профилировании ре‑
ализации алгоритмов на языке С++ вычисление 
расстояния между словами является “горячей точ‑
кой” и занимает 20–50% от общих затрат времени 
на работу алгоритма (5–15 миллисекунд на один 
документ различного типа). Другими словами, 
основное время занимает отождествление слов. 
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Цель оптимизации функций привязки и класси‑
фикации обусловлена необходимостью приме‑
нять эти функции не один раз для изображения 
документа, а столько раз, сколько имеется описа‑
ний типов различных возможных документов.

Очевидно, что при анализе фрагмента доку‑
мента количество кандидатов на отождествле‑
ние с  текстовыми точками модели может быть 
существенно меньше, чем при анализе всех рас‑
познанных слов страницы. Это обеспечивает‑
ся штрафными функциями f1 и  f2, отношениями 
между точками в созвездии и порогами, применя‑
емыми при вычислении расстояний между V и W 
с помощью метрик. При обучении моделей клас‑
сификации (1) на документах более чем на 10 ти‑
пах деловых документов объем модели составляет 
более 100 точек, то при задании созвездий в ви‑
де простой или вертикальной цепей требуется 
не более 10 точек. Затраты на работу реализации 
уменьшаются существенно.

Эффективной оптимизацией вычисления рас‑
стояния между словами V и W является вычисление 
на первом этапе штрафов Pen(V, W) = f1(G(V), W) + 
+  f2(G2(V,  W)). В  случае превышения Pen(V,  W) 
порога d(V). Вычисление по рекуррентной форму‑
ле (2), имеющей квадратичную сложность, про‑
водится только в случае, когда Pen(V, W) < d(V).

Предложенная оптимизация является высоко‑
уровневой и будет давать эффект независимо от 
архитектурной платформы, на которой исполня‑
ется реализация алгоритма. Также была предпри‑
нята низкоуровневая оптимизация. Целью этого 
была реальная потребность. Затраты времени на 
классификацию и  привязку на наборе распоз‑
нанных слов являются незначительными в  схе‑
ме обработки, в  которой классификация и  при‑
вязка полей документа проводится один раз для 
каждого образа документа. Если же классифика‑
ция и привязка проводятся многократно для не‑
скольких типов документа и многократно приме‑
няются к  одному набору распознанных слов, то 
затраты времени увеличиваются вместе с числом 
применяемых типов. Опишем две оптимизации, 
направленные на ускорение вычислений для ре‑
альных типов центральных процессоров.

Первая оптимизация была связана с  вы‑
числением функции substCost(s, c). В  реализа‑
ции алгоритма создавались глобальные (соот‑
ветствующие документу в  целом) и  локальные 
(соответствующие одному слову) таблицы эк‑
вивалентности символов, s  ≠  c для которых 
substCost(s, c) = 0. При сравнении двух символов 
проводился поиск в таблице эквивалентности m_
nEquChars, имеющий целый 32-разрядный тип, 

этих символов с учетом перестановки. При про‑
филировании на компьютере Intel(R) Core(TM) 
i7–4790 CPU3.60 GHz, 16,0 GB, Windows 7 
prof 64-bit с  помощью ПО MVS Analizer и  Intel 
VTune [15] функция substCost определилась как 
“горячая точка”. Исходный и ассемблерный ко‑
ды представлены на рис. 1.

Функция может быть ускорена за счет исполь‑
зования 64-разрядного целого типа (рис. 2). При 
использовании типа __int64 при компиляции 
с помощью MSV Compiler для режима x64 коли‑
чество инструкций для реализации тела цикла 
уменьшается с 13 до 8. Ускорение на некоторых 
типах документов составляет 10%.

Другая оптимизация была предназначена для 
платформы ARM в смартфонах iPhone. Оказалось, 
что в  сложных сценариях многократного приме‑
нения классификации и привязки реализация до‑
ступа к объектам (текстовым точкам, строкам, от‑
ношениям между точками) типа get_object(int id, 
void *pObject) приводят к появлению горячей точ‑
ки на архитектуре RISC. Это объясняется высокой 
латентностью операций копирования данных из 
оперативной памяти. Ускорение достигается при 
отмене создания новой копии объекта и  предо‑
ставления непосредственного доступа к объекту.

Описанные алгоритмы были внедрены в SDK 
Smart Document Engine  [16], предназначенный 
для распознавания гибких деловых документов. 

Рис.  1. Реализация исходного варианта функции 
substCost.

Рис.  2. Реализация оптимизированного варианта 
функции substCost.
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Основным режимом работы SDK Smart Document 
Engine является параллельный режим. Паралле‑
лизация обеспечивается автоматически с  помо‑
щью библиотеки Intel TBB [17].

Рассмотрим другой пример оптимизации бы‑
стродействия для задачи сортировки большо‑
го потока деловых документов (300 000 страниц 
за 8 ч). После распознавания OCR Tesseract  [18] 
проводилась классификация для 45  типов из‑
вестных документов. Отметим, что число клас‑
сов, равное 45, существенно превышает число 
классов в публичных датасетах [19, 20]. Высоко‑
уровневая оптимизация алгоритмов классифика‑
ции проводилась с помощью выбора параметров 
и  представления данных для компоненты OCR 
Tesseract. Существенный эффект был достигнут 
за счет ограничения области распознавания в ка‑
ждой из страниц. Для этого на обучающем множе‑
стве была выбрана область, в которой находились 
необходимые для классификации всех докумен‑
тов текстовые особые точки. Результативной ока‑
залась процедура бинаризации образов страниц 
перед распознаванием. Первоначальной целью 
бинаризации мы считали улучшение собственно 
точности распознавания благодаря снятию слож‑
ного фона и морфологическим операциям.

Низкоуровневая оптимизация проводилась 
с помощью выбора параметров компиляции ком‑
поненты Intel C++ Compiler XE15.0. Для ком‑

пилятора была указана опция оптимизации для 
архитектуры AVX2. Компилятор Intel позволил 
оптимизировать быстродействие как Tesseract, 
так и для всех других компонент системы, прежде 
всего билатеральный фильтр. Ускорение за счет 
высокоуровневой и  низкоуровневой оптимиза‑
ции составило более 50%.

Параллелизация была реализована с  помо‑
щью самостоятельных компонент, позволяю‑
щих запустить на нескольких многоядерных уз‑
лах по нескольку приложений, обрабатывающих 
страницы в  нескольких потоках, а  входной по‑
ток страниц назначается этим приложениям со‑
гласно некоторому алгоритму балансировки (см. 
рис. 3). Система была реализована с параллелиз‑
мом без использования явного управления.

ЗАКЛЮЧЕНИЕ
В  разделах 4 и  5 были рассмотрены приме‑

ры высокоуровневой и  низкоуровневой опти‑
мизации на примере программ распознавания 
документов. Описанные методы оптимизации 
быстродействия программного обеспечения при‑
годны для более широкого класса приложений 
для обработки изображений (ПОИ).

Для разработки ПОИ важен выбор готовых или 
вновь разрабатываемых программных компонент. 
Этот выбор зависит от формы разработки (проект 
или собственная разработка). Во всех случаях 

Папка ввода Папка ввода

… …

Приложение балансировки Приложение балансировки

Приложение обработки Приложение обработки

Приложение обработки Приложение обработки

Папка обмена Папка обмена

Приложение импорта в ЭА

… …

Рис. 3. Параллельная реализация системы сортировки.
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уместны оценка сложности выбранных алгорит‑
мов и макетирование ПОИ. Необходимым этапом 
оптимизации является определение требований 
к быстродействию программного приложения.

С  самого начала разработки важнейшим ин‑
струментом высокоуровневой и низкоуровневой 
оптимизации является профайлер. Этот инстру‑
мент применяется для анализа профиля, выбора 
горячих точек и уточнения ограничений на время 
выполнения горячих точек. На начальных этапах 
разработки является полезным анализ исходно‑
го кода на эмуляторах будущей вычислительной 
платформы, в том числе моделирование задержек 
в подсистеме памяти [21]. Выбор представления 
изображения может внести существенный вклад 
в ускорение алгоритма. В качестве примера мож‑
но привести использование интегрального пред‑
ставления для извлечения признаков Хаара [22]. 
При реализации искусственных нейронных сетей 
для ускорения эффективен выбор размеров слоев 
сети и представления данных [23, 24].

Расширенные системы инструкций SIMD 
(MMX, XMM, NEON) эффективно ускоряют ал‑
горитмы обработки изображений и  распознава‑
ние. Для применения возможностей конкретной 
платформы могут использоваться как средства 
компиляторов, так и  интринсики. Однако для 
различных вычислительных платформ различны 
не только компиляторы, но и наборы интринси‑
ков. Последнее следует учесть при проектирова‑
нии на предыдущем этапе представления данных, 
например, для нейронных сетей [23].

В предположении, что обработка изображения 
занимает время, существенно превышающее вре‑
мя кванта операционной системы, например, это 
время превышает 100 мс, возможны два способа 
распараллеливания. Первый способ состоит в ис‑
пользовании средств автоматического распарал‑
леливания [17], второй – непосредственное фор‑
мирование потоков параллельного управления. 
Распараллеливание имеет смысл проводить после 
завершения высокоуровневой и низкоуровневой 
оптимизации ПОИ.

Предлагаемые методы оптимизации быстро‑
действия программного обеспечения пригодны не 
только для реализации ПОИ, но и  для вычисли‑
тельных алгоритмов, в которых проводится цикли‑
ческая обработка информации большого объема.
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The paper discusses technologies for optimizing software performance. Optimization methods are divided in‑
to high-level and low-level, as well as parallelization. An algorithm for classifying and linking fields in a recog‑
nized image of an administrative document is described. The features of the implementation of classification 
and linking tasks are listed, consisting of the use of constellations of text feature points and the modified Lev‑
enshtein distance. SDK Smart Document Engine and OCR Tesseract were used. Several ways are described 
to optimize the performance of the functions for classifying and linking document content. Optimization of 
the performance of the system for sorting a stream of images of administrative documents is also described. 
The proposed methods for optimizing software performance are suitable not only for implementing image 
processing algorithms but also for computational algorithms in which cyclic information processing is carried 
out. The method can be applied in modern CAD systems to analyze the content of recognized textual files.
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