
ПРОГРАММИРОВАНИЕ, 2024, № 6, с. 48–58

48

АНАЛИЗ ДАННЫХ

УДК: 004.93

ОПТИМИЗАЦИЯ БЫСТРОДЕЙСТВИЯ ПРОГРАММНОГО
ОБЕСПЕЧЕНИЯ РЕАЛИЗАЦИИ АЛГОРИТМОВ КЛАССИФИКАЦИИ

И ПРИВЯЗКИ ДЕЛОВЫХ ДОКУМЕНТОВ
© 2024 г. О. А. Славинa, b, *

a Федеральный исследовательский центр “Информатика и управление” РАН
119333 Москва, ул. Вавилова, 44/2, Россия

bООО “Смарт Энджинс Сервис”
117312 Москва, проспект 60-летия Октября, 9, Россия

* E‑mail: oslavin@isa.ru
Поступила в редакцию 13.07.2024 г.

После доработки 15.07.2024 г.
Принята к публикации 15.07.2024 г.

В работе рассматриваются технологии оптимизации быстродействия программного обеспечения.
Методы оптимизации подразделяются на высокоуровневые и низкоуровневые, а также на распа­
раллеливание. Описываемые методы оптимизации применяются к программам и программным
системам, реализующим разнообразную обработку информации, в которых неэффективность
использования аппаратных ресурсов может присутствовать в большом числе горячих точек. Как
пример приведен алгоритм классификации и привязки полей в распознанном образе делового до­
кумента. Перечисляются особенности реализации задач классификации и привязки, состоящие
в применении созвездий особых текстовых точек и модифицированного расстояния Левенштейна,
В качестве OCR была использована система SDK Smart Document Engine и Tesseract. Описано не­
сколько способов оптимизации быстродействия функций классификации и привязки содержимого
документа. Также описана оптимизация быстродействия системы сортировки потока изображений
деловых документов. Предлагаемые методы оптимизации быстродействия программного обеспе­
чения пригодны не только для реализации алгоритмов обработки изображений, но и для вычисли­
тельных алгоритмов, в которых проводится циклическая обработка информации большого объема.

Ключевые слова: анализ текста, распознавание документа, классификация документа, текстовая осо­
бая точка, ускорение
DOI: 10.31857/S0132347424060057, EDN: DYKMMM

1. ВВЕДЕНИЕ
Необходимость оптимизации быстродействия

программ объясняется различными потребностя­
ми. Требования к быстродействию может сфор­
мулировать Заказчик информационной системы
в техническом задании. Требования к быстродей­
ствию указываются для конкретных видов ком­
пьютеров и конкретных операционных систем.
Аналогично возникают требования к быстродей­
ствию для приложений, предназначенных для
мобильных устройств. Ограничения по времени
выполнения мобильных приложений связаны
не только с ограничением времени реакции, но
и с ограничениями энергопотребления и нагрева
мобильного устройства. Существует корреляция
между быстродействием приложения и энерго­
потреблением.

Оптимизация ПО преследует одну или не­
сколько целей:

•	уменьшение среднего времени исполнения
программного приложения на некотором тесто­
вом наборе;

•	уменьшение среднего времени исполнения
реализованной функции.

2. ПРИНЦИПЫ ОПТИМИЗАЦИИ
БЫСТРОДЕЙСТВИЯ ПРОГРАММНОГО

ОБЕСПЕЧЕНИЯ
При разработке программного обеспечения

(далее – ПО) возможна оптимизация нескольких
типов:

•	высокоуровневая оптимизация (оптимиза­
ция алгоритмов);

•	низкоуровневая оптимизация с исполь­
зованием особенностей вычислительной тех­
ники;

•	параллельное программирование.

ПРОГРАММИРОВАНИЕ № 6 2024

	 ОПТИМИЗАЦИЯ БЫСТРОДЕЙСТВИЯ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ	 49

Высокоуровневая оптимизация базируется на
выборе метода решения задачи, которая должна
войти в состав разрабатываемой программы. Ал­
горитм может существенно зависеть от области
определения, например, уменьшение объема дан­
ных очевидным образом уменьшает время пере­
бора. Выбор параметров алгоритма также может
существенно влиять на сложность. Высокоуров­
невая оптимизация проводится для упрощенной
архитектуры компьютера, такой как архитектура
фон Неймана или Гарвардская архитектура. Под
архитектурой понимается совокупность поль­
зовательских характеристик, к которым относят
основные устройства и блоки упрощенного ком­
пьютера, а также структуру связей между ними.
С точки зрения разработчика программного обе­
спечения архитектура компьютера – набор опи­
саний используемых данных, операций (инструк­
ций) и их характеристик.

В высокоуровневой оптимизации возможно
применение следующих способов:

•	анализ алгоритма (реализация, выбор, об­
ласть определения, параметризация, правило
остановки);

•	использование промежуточных данных (ме­
моизация [1]);

•	представление исходных данных;
•	уменьшение сложности алгоритма (lookup

table [2], интерполяция);
•	оптимизация циклов (вынос вычислений из

тела цикла, слияние циклов, loop unrolling).
Низкоуровневая оптимизация, ориентирован­

ная на аппаратную платформу, – это совокуп­
ность технических средств, определяющих среду
функционирования конкретных программ. Ос­
новой аппаратной платформы является совокуп­
ность системной (материнской) платы, централь­
ного процессора (далее – ЦП) и запоминающих
устройств. Выполняемая на компьютере програм­
ма состоит из команд конкретного процессора.

Низкоуровневая оптимизация проводится для
конкретных процессорных микроархитектур [3],
таких как:

•	CISC (различная длина машинной инструк­
ции);

•	RISC (одинаковая длина машинной ин­
струкции);

•	VLIW (параллельное выполнение несколь­
ких операций в одной инструкции);

•	суперскалярная архитектура, в которой ре­
шение о параллельном исполнении двух или бо­
лее команд между несколькими устройствами ис­
полнения принимается аппаратурой процессора
на этапе исполнения.

Вообще говоря, низкоуровневая оптимизация
для различных процессорных микроархитектур
будет различной. Например, различаются мно­
жества команд SIMD для ЦП ARM и ЦП Intel.
Директивы программиста для улучшения парал­
лельного исполнения инструкций для ЦП архи­
тектуры VLIW невозможны для ЦП Intel.

Использование параллельного исполнения
(параллелизации) является эффективным спо­
собом повышения быстродействия ПО. Парал­
лельному исполнению способствует такая орга­
низация вычислительного процесса, при которой
на одном процессоре попеременно выполняются
сразу несколько программ, совместно использу­
ющих один или несколько процессоров и другие
ресурсы компьютера. Такой способ называется
многозадачностью. Многозадачность призвана
повысить эффективность использования вычис­
лительной системы, при этом могут использо­
ваться различные критерии эффективности вы­
числительных систем, например:

•	пропускная способность – количество за­
дач, выполняемых вычислительной системой
в единицу времени в операционных системах (да­
лее – ОС) пакетной обработки;

•	удобство работы пользователей, заключа­
ющееся, в частности, в том, что они имеют воз­
можность интерактивно работать одновременно
с несколькими приложениями на одной машине
в ОС разделения времени;

•	реактивность системы – способность систе­
мы выдерживать заранее заданные (возможно,
очень короткие) интервалы времени между запу­
ском программы и получением результата в ОС
реального времени.

Параллелизацию имеет смысл проводить по­
сле завершения высокоуровневой и низкоуровне­
вой оптимизации последовательной программы
или алгоритма. Основой параллелизации являет­
ся выполнение частей программы на нескольких
исполнительных устройствах, в качестве которых
мы будем рассматривать несколько центральных
процессоров. Формально различают параллель­
ное выполнение задач приложения на одном ком­
пьютере и распределенное выполнение несколь­
ких приложений на нескольких компьютерах
в локальной сети. Основными подходами к разра­
ботке параллельных программ являются:

•	последовательное программирование с даль­
нейшим автоматическим распараллеливанием;

•	непосредственное формирование потоков
параллельного управления с учетом особенно­
стей архитектур параллельных вычислительных
систем или операционных систем;

ПРОГРАММИРОВАНИЕ № 6 2024

50	 СЛАВИН	

•	описание параллелизма без использования
явного управления.

3. МЕТОДЫ ОПТИМИЗАЦИИ
БЫСТРОДЕЙСТВИЯ ПО

Описываемые далее методы оптимизации
применяются, прежде всего, к программам и про­
граммным системам, реализующим разнообраз­
ную обработку информации. То есть мы рассма­
триваем не программы, в которых реализуется
один или несколько математических алгоритмов,
таких как, например, функции из библиотек
Eigen или MKL. Иначе класс рассматриваемых
программ можно охарактеризовать как програм­
мы, в которых неэффективность использова­
ния аппаратных ресурсов может присутствовать
в большом числе горячих точек.

3.1. Особенности высокоуровневой оптимизации
быстродействия для реализации проектов

и разработки продуктов
Описанные в разделе 2 принципы оптими­

зации ПО применяются в различных условиях
по-разному.

Так, формирование требований к быстродей­
ствию существенно различается при разработке
продуктов (API, библиотек, приложений) и ре­
ализации проектов (в том числе систем, подси­
стем, функциональных модулей). Оба вида разра­
ботки имеются сходство, для них возможны:

•	использование готовых программных мо­
дулей;

•	высокоуровневая оптимизация;
•	применение экспертных оценок ускорения.
Однако имеются и существенные различия.

Например, план выпуска продукта допускает
увеличение времени на разработку, связанную
с созданием новых алгоритмов, которые априори
должны обладать меньшей сложностью, нежели
уже реализованные алгоритмы. При разработке
продуктов необходимо предусмотреть возмож­
ность постоянного профилирования и другого
анализа быстродействия. В разработке продук­
тов необходим анализ быстродействия конкури­
рующих продуктов, на которые следует ориен­
тироваться. В реализации проектов требования
к быстродействию могут быть сформированы за­
казчиком проекта, но срок реализации и ресурсы
проекта могут ограничить время, затрачиваемое
на оптимизацию. В обоих случаях предусматри­
вается оптимизация покупных и собственных мо­
дулей. Оптимизация покупных модулей в части
замены или модификации имплементированных
алгоритмов чаще всего невозможна, но возможно

управление быстродействием посредством пред­
ставления данных и выбора параметров вызыва­
емых методов.

3.2. Профилирование ПО
Во всех случаях необходимо профилирование,

т.  е. измерение быстродействия пользователь­
ской программы или частей программы. Целью
профилирования является исследование быстро­
действия приложения как в целом, так и состав­
ляющих его объектах (точках): функциях, циклах,
строках, инструкциях.

Замеры позволяют анализировать:
•	общее время исполнения приложения;
•	набор горячих точек (hot spots);
•	удельное время каждой точки;
•	количество вызовов точки;
•	степень покрытия программы (доля кода,

которая была использована при исполнении);
•	загрузку CPU и захват памяти;
•	низкоуровневую статистику о загрузке

CPU и шины доступа к памяти, кэш-промахах
и кэш-попадания;

•	степень параллелизма приложения.
Профилированию может подвергаться как от­

ладочная версия приложения, так и оптимизи­
рованная отладочная версия или релизная вер­
сия с отладочной информацией. Существенным
условием профилирования является проведение
замеров на одном и том же тестовом наборе (дата­
сете), который может быть как опубликованным
в открытом доступе, так и собственным. Профи­
лирование необходимо проводить в одних и тех
же условиях на выбранных платформах, включа­
ющих аппаратную часть и системное ПО.

Известны несколько методов инструменталь­
ного профилирования:

•	ручной (проведение замеров времени с по­
мощью вручную добавленных в код приложе­
ния вызовов системных функций, таких как
std:: clock, или использования методов библиоте­
ки std:: chrono);

•	семплирование (time-based profiling) – сбор
статистики о работе приложения во время про­
филирования;

•	инструментирование (instrumentation) –
сбор детализированной информации о време­
ни работы каждой вызванной функции во время
профилирования.

Достоинством ручного подхода является про­
стота замеров небольшого числа заранее извест­
ных точек, недостатки состоят в следующем:

•	необходимость вставки дополнительно­
го кода в программу, что может приводить

ПРОГРАММИРОВАНИЕ № 6 2024

	 ОПТИМИЗАЦИЯ БЫСТРОДЕЙСТВИЯ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ	 51

к появлению не только ошибок, но и наведенных
эффектов;

•	возможность анализа результата в тексто­
вом виде;

•	отсутствие дерева вызовов функций, средств
автоматического анализа.

В профайлере, основанном на семплирова­
нии, периодически собирается информация о со­
стоянии программы, например, значения счет­
чиков производительности процессора, значение
счетчика команд. На основании этих замеров
проводится подсчет производительности. Метод
семплирования менее всего влияет на работу ана­
лизируемого ПО и полученная информация об­
ладает малой погрешностью. Основными недо­
статками таких профайлеров являются:

•	получение неполной информации о коде;
•	длительное время для сбора реальной ста­

тистики.
Метод инструментирования модифицирует

исполняемый файл ПО для сбора информации
о выполнении каждой функции, исключая время,
потраченное на вызываемые функции и обраще­
ния к операционной системе. Метод инструмен­
тирования предоставляет больше информации,
чем метод семплирования, но может существен­
но замедлить работу профилируемого ПО.

Известно несколько универсальных профай­
леров, к ним относятся следующие программы:

•	CodeAnalyst;
•	Valgrind;
•	Performance Profiler из среды Visual Studio;
•	Intel VTune.
Все перечисленные профайлеры позволяют

определять горячие точки программы, локали­
зовать участки кода, в которых неэффективно
используются аппаратные ресурсы, неэффек­
тивность использования процессора, выявлять
объекты синхронизации, которые негативно вли­
яют на производительность программы. Продукт
Intel VTune предоставляет возможность оценки
большого числа аппаратных счетчиков и метрик
для определения критических объектов. Intel
VTune позволяет в режиме эмуляции моделиро­
вать работу определенного процессора, включая
кэш-память различного уровня с механизма­
ми замещения, декодеры и буферы инструкций,
конвейеры инструкций и другие компоненты ЦП
и его взаимодействия с памятью.

3.3. Методы низкоуровневой оптимизации
быстродействия ПО

Основным способом низкоуровневой оптими­
зации при разработке ПО является выбор параме­

тров компилятора. Например, для среды Microsoft
Visual Studio и других компиляторов важнейшим
параметром является вид оптимизации: без оп­
тимизации или с оптимизацией быстродействия,
или с оптимизацией объема программы. Другим
способом оптимизации быстродействия является
явное указание архитектуры, позволяющее ком­
пилятору применять при трансляции инструкции
выбранного набора команд.

Использование математических библиотек
также является эффективным средством уско­
рения вычислений. Компилятор Intel Compiler
Enable Matrix содержит параметр Multiply Library
Call, который включает или отключает вызов би­
блиотеки Matrix Multiply. Широко известна би­
блиотека Intel MKL, содержащая многочислен­
ные реализованные и оптимизированные для
современных ЦП вычислительные методы.

Разумеется, остается востребованным и про­
граммирование на ассемблере или применение
интринсиков, что, собственно, и позволяет соз­
давать библиотеки для быстрых вычислений.

3.4. Подходы к распараллеливанию программ
Основными подходами к разработке парал­

лельных программ являются:
•	последовательное программирование

с дальнейшим автоматическим распараллелива­
нием;

•	непосредственное формирование потоков
параллельного управления с учетом особенно­
стей архитектур параллельных вычислительных
систем или операционных систем;

•	описание параллелизма без использования
явного управления.

Последовательное программирование с даль­
нейшим автоматическим распараллеливанием
упрощает разработку, позволяя полностью аб­
страгироваться от возможностей параллелизации
и возложить распараллеливание на инструмен­
тальные средства. Очевидный недостаток этого
подхода – невозможность достичь максимально­
го ускорения.

Перечислим некоторые средства автомати­
ческого распараллеливания с помощью кросс­
платформенных многопоточных библиотек для
языка C++:

•	Qt4 Threads;
•	Intel Threading Building Blocks (TBB).
Достоинством подхода, состоящего в непо­

средственном формировании потоков парал­
лельного управления, является возможность
получения значительно большего ускорения
для конкретной вычислительной системы по

ПРОГРАММИРОВАНИЕ № 6 2024

52	 СЛАВИН	

сравнению с предыдущим подходом. Недостатки
подхода состоят в следующем:

•	усложнение разработки из-за ручного
управления собственными процессами и потока­
ми, в том числе, анализ возможных конфликтов;

•	зависимость от конкретной архитектуры
многопроцессорного комплекса, что затрудняет
переносимость на другие платформы.

Упрощение разработки возможно при рас­
параллеливании с указанием директив, которые
указывают компилятору на необходимость распа­
раллеливании фрагмента исходного кода с предпо­
лагаемой возможной параллельной реализацией.

При распараллеливании также необходимо
проводить профилирование для оценки потерь
времени из-за конфликтов потоков и неопти­
мальности использования данных несколькими
потоками.

4. ЗАДАЧИ РАСПОЗНАВАНИЯ
И КЛАССИФИКАЦИИ ДЕЛОВЫХ

ДОКУМЕНТОВ
Распознавание изображений документов с из­

вестным описанием включает в себя несколько
задач, таких как:

•	поиск границ документа;
•	нормализация размера и границ документа;
•	извлечение графических примитивов;
•	распознавание символов и слов, анализ

структуры документа;
•	поиск границ и распознавание полей доку­

мента;
•	постобработка результатов распознавания.
Важнейшими задачами являются классифи­

кация типа документа (фрагмента документа)
и привязки полей (поиск областей документа
для извлечения заполнения). При анализе рас­
познанных изображений необходимо учитывать
ошибки OCR, появляющиеся в зашумленных,
осветленных или искаженных образах докумен­
тов. В данной работе рассматриваются деловые
документы, предназначенные для обмена данны­
ми с организациями и физическими личностя­
ми [4]. Деловые документы характеризуются от­
носительно простой структурой и ограниченным
словарем статических текстов.

Мы будем определять документ как совокуп­
ность полей и статической информации. Структу­
ра текста делового документа может быть описа­
на с помощью трех объектов: слово, строка текста
и фрагмент текста. Для классификации распоз­
нанного документа и привязки полей могут быть
применены текстовые особые точки и созвездия
текстовых точек, определенные в [5, 6]. Текстовые

особые точки являются аналогами геометрических
особых точек [7, 8]. Слово модели представляет­
ся последовательностью символов. Распознанное
слово представляется матрицей альтернатив соот­
ветствия знакомест символов символам алфавита
распознавания и рамкой слова.

Для пары текстовых особых точек (ω1, ω2) мо­
гут быть заданы следующие отношения:

•	ω1  S, ω2  S (ω1  F, ω2  F) – обе текстовые
точки принадлежат одной строке S или одному
фрагменту текста F;

•	ω1  S1, ω2  S1 (ω1  F1, ω2  F2) – обе точки
ω1 и ω2 принадлежат различным строкам S1 и S2
или различным фрагментам текста F1 и F2;

•	ω1 < ω2 – точка ω1 размещена “перед” точ­
кой ω2;

•	ω1 ˅ ω2 – точка ω1 размещена “выше” точ­
ки ω2.

Строка текста является созвездием несколь­
ких близких друг к другу текстовых особых точек.
Строки текста могут быть найдены с помощью
алгоритмов кластеризации рамок распознанных
слов. Строка описывается множеством упорядо­
ченных текстовых особых точек. Для двух строк
(S1, S2) могут быть заданы следующие отношения:

•	S1  F, S2  F – обе строки текста принадле­
жат одному фрагменту текста F;

•	S1  F1, S2  F2 – обе строки текста принадле­
жат различным фрагментам текста F1 и F2;

•	S1 ˅ S2 – cтрока S1 размещена “выше” стро­
ки S2.

Под привязкой строки мы понимаем установ­
ление соответствия слов распознанной строки
с одной из описанных возможных строк. Некото­
рые точки являются обязательными для привяз­
ки. При привязке с каждой обязательной точкой
должно быть отождествлено некоторое распоз­
нанное слово. Также в описании строки могут
присутствовать запрещенные текстовые точки.
При привязке строки ни одна из запрещенных
точек не может быть отождествлена с некоторым
распознанным словом. Остальные текстовые точ­
ки могут быть отождествлены с распознанными
словами при привязке строки, или не быть отож­
дествленными.

В описании строки для пары текстовых точек
могут быть заданы ограничения с помощью сле­
дующих метрик:

•	количество точек в промежутке между двумя
точками ω1 и ω2;

•	сумма ширин текстовых точек, размещен­
ных между точками ω1 и ω2;

•	количество строк в промежутке между стро­
ками, содержащими точки ω1 и ω2;

ПРОГРАММИРОВАНИЕ № 6 2024

	 ОПТИМИЗАЦИЯ БЫСТРОДЕЙСТВИЯ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ	 53

•	евклидово расстояние между двумя проек­
циями рамок точек ω1 и ω2.

Фрагмент текста является совокупностью
нескольких текстовых строк. В нашей модели
предполагается, что в одном фрагменте строки
группируются только в одну колонку. Для двух
фрагментов (F1, F2) могут быть заданы следую­
щие отношения:

•	F1  F, F2  F – два фрагмента принадлежат
текстовому фрагменту F;

•	F1 < F2 – фрагмент F1 размещен “перед”
фрагментом F2;

•	F1 ˅ F2 – фрагмент F1 размещен “выше”
фрагмента F2.

Фрагменты текста могут быть созданы с по­
мощью алгоритмов анализа структуры текста.
Разбиение документа на части осуществляется
на основе его графического строения (разделяю­
щих прямых, колонок, абзацев и т. п.) под управ­
лением некоторого описания (шаблона) доку­
мента [9, 10]. Для разбиения на фрагменты могут
быть использованы как отрезки, разделяющие
фрагменты, так и промежутки между фрагмен­
тами. Под привязкой фрагмента мы понимаем
установление соответствия слов и строк фрагмен­
та с одним из описанных возможных фрагментов.
Аналогично описаниям строки в описании фраг­
мента содержатся обязательные, запрещенные
и обычные строки и слова.

Созвездие задается в виде последовательности
упорядоченных точек ω1, …, ωn. Простым случа­
ем созвездия является последовательность точек,
принадлежащих одной текстовой строке, в самом
простом случае это – шингл (последовательность
слов заголовка документа). Другим случаем созвез­
дия являются цепи – последовательность точек,
пары которых упорядочены отношениями ω1 < ω2
(простая цепь) или ω1 ˅  ω2 (вертикальная цепь).
Использование цепей и созвездий позволяет не
только находить тип документа, но и детектировать
фрагменты и строки текста. Последнее позволяет
сократить объем текста, используемого в анализе
текстового объекта, например, в привязке поля.

В работах [5, 6] описан способ привязки полей
гибкого документа. Привязка строк, параграфов
и фрагментов документа проводится с помощью
следующего алгоритма классификации. Задают­
ся модели допустимых строк M1, M2, …, Mq, ка­
ждая модель M определена набором текстовых
особых точек:

	 M
W W W W W

W W W W
k

k k

=
… …

…







+ + +
+

− − −
−

1 2 1 2

1 2

, , , , , , ,

, , , ,






	 (1)

и параметр dLINK(M) – пороговое значение чис­
ла привязанных точек для надежной привязки.
В наборе (1) используются три мешка слов:

•	запрещенные слова W–={W–
1, W–

2, …, Wk–};
•	обязательные слова W+={W+

1, W+
2, …,

W+
k+};
•	необязательные слова W={W1, W2, …, Wk}.
Вычисляются оценки Δ(S, Mi) соответствия

моделям каждой из строк S. Оценка Δ (S, Mi) рав­
няется 0, если:

•	была привязана хотя бы одна точка из мно­
жества W–(S);

•	не было привязано ни одной точки из мно­
жества W+(S).

Оценка Δ(S, Mi) равняется 1, если не было при­
вязано ни одной точки W–(S) и число привязан­
ных точек W(S) и W+(S) превосходит dLINK(Mi).
Если Δ(S, Mi) равняется 1, то строка S считает­
ся привязанной к модели Mi. Точность привяз­
ки строк зависит от предварительной привязки
окрестности допустимого размещения строк. По­
сле привязки строк проводится поиск (прогноз)
границ полей для последующего извлечения ин­
формации. Для области каждого поля задаются
опорные элементы, определяющие прямоуголь­
ник или многоугольник. Привязка поля проводит­
ся с помощью привязанных опорных элементов.

Описанный алгоритм классификации строк
применяется для классификации документа.
Классификация образа страницы документа про­
водится с помощью привязки точек созвездия
с учетом заданных отношений между некоторы­
ми точками.

Отождествление текстовой точки и распоз­
нанного слова проводится с помощью предло­
женного в [6] модифицированного расстояния
Левенштейна (далее – МРЛ). Механизм отож­
дествления слов применяется во многих задачах,
основанных на сравнении слов с алфавитом в ба­
зе данных [11, 12]. Оригинальное расстояние Ле­
венштейна [13] между двумя текстовыми строка­
ми V и W определяется как минимальное число
редакционных операций для трансформации V
в W и вычисляется следующим образом:
	 d DLEV LEVV, W V , W() ()= ,

	 ∀ = ∀ =() ()j ij iD D LEV LEV0 0 0 0, , , , 	 (2)

	 D i j i j i j i jLEV LEV LEV LEVmin D D D s, , , , , ,() () () ()= − + − + − − +1 1 1 1 1 1 uubstCost v wi i, ,()()
	D i j i j i j i jLEV LEV LEV LEVmin D D D s, , , , , ,() () () ()= − + − + − − +1 1 1 1 1 1 uubstCost v wi i, ,()()
где substCost(vi, wj) – цена операции замены
символа vi на символ wj, |V| и |W| – длины слов V

ПРОГРАММИРОВАНИЕ № 6 2024

54	 СЛАВИН	

и W. По умолчанию цена любой из редакцион­
ных операций равняется 1. В работе алгоритм вы­
числения расстояния Левенштейна между двумя
текстовыми строками реализован в полном соот­
ветствии с рекуррентной формулой (2). В реали­
зации не применялись методы экономии памяти,
уменьшающие производительность.

Мы будем считать тождественными слова V
и W, если dLEV(V, W) < d(V), где d(V) – известный
порог для слова модели. При распознавании про­
граммами OCR появляются неединичные ошиб­
ки распознавания. Поэтому порог d(V) не может
быть нулевым. Очевидно, что порог d(V) должен
быть различным для слов различной длины. Для
учета этого обстоятельства можно использовать
нормализованное расстояние Левенштейна [14]:

	 ρLEV
LEV

LEV
V, W

V, W
V W V, W

() =
()

+ + ()
2d

d
.

При распознавании зашумленных и искажен­
ных изображений документов возможно появле­
ние многочисленных ошибок распознавания. Не­
которые ошибки OCR не являются случайными.
Ошибочное распознавание образа символа “Х”
как символа “О” маловероятно. В то же время об­
раз символа “Ъ” может быть ошибочно распоз­
нан как символ “Ь” из-за сходства образов “Ъ” и
“Ь”. Примерами сходных образов для латинского
алфавита являются пары символов “B8”, “DO”,
“1I”. Другими словами, некоторые ошибки рас­
познавания символов случаются чаще, чем дру­
гие. Для учета этого нужно построить substCost(vi,
wj) так, чтобы при вычислении расстояния Левен­
штейна штраф за сходные символы был меньше,
чем за символы несходные:

•	для одинаковых символов substCost(vi, vi)  =  0;
•	для различных несходных символов

substCost(vi, wj) = 1;
•	для сходных же символов substCost(vi, wj) = 0,

либо 0 < substCost(vi, wj) < 1.
Описанная модификация позволяет умень­

шить расстояние, вычисляемое для слов с ошиб­
ками в виде сходных символов.

Для некоторых далеких по смыслу слов, на­
пример, идентификаторов, расстояние Левен­
штейна между ними является небольшим. Для
исключения рассмотренных случаев ложного
отождествления предлагается применять шабло­
ны слов модели следующего вида:
	 G V b b b m m m e e ek p q() = … ⋅ … ⋅ …1 2 1 2 1 2 .

В этих шаблонах заданы обязательные симво­
лы в начале, в середине или в конце слова. Если

при сравнении символы распознанного слова
не удовлетворяют шаблону, то расстояние Ле­
венштейна увеличивается на заданный заранее
штраф. Эта модификация позволяет увеличить
расстояние между словами, различающимися не­
значительным числом символов, которые явля­
ются признаками для различия слов.

Штраф при отождествлении может быть на­
значен за несоответствие длин слов V и W:
	 G V W V W V2 , .() ()= − >� δ

Сходство между словом модели V и распоз­
нанным словом W устанавливают по формуле
Sim V, W V, W G V , W G V, WLEV 2() () − ()() − ()()= d f f�1 2 ,

где f1(G(V), W) – штраф за несоответствие слова
модели V и распознанного слова W, вычисленный
с помощью шаблона G(V); f2(G2(V, W)) – штраф
за несоответствие длин слова модели V и распоз­
нанного слова W.

При этом может применяться функция
substCost(vi, wj), учитывающая ошибки распозна­
вания для сходных символов. Если штраф отсут­
ствует (f(G(V), W) = 0) и сходных символов нет
(substCost(vi, wj) = 0 или substCost(vi, wj) = 1), то
Sim(V, W) совпадает с расстоянием Левенштейна
dLEV(V, W). Сходство Sim(V, W) также может быть
нормализовано аналогично ρLEV(V, W).

Предложенные модификации расстояния Ле­
венштейна позволяют уменьшить число совпа­
дений слов, которые нельзя отождествлять, и од­
новременно увеличить число совпадений слов,
в которых имеются несущественные ошибки рас­
познавания.

5. ОПТИМИЗАЦИЯ РЕАЛИЗОВАННЫХ
АЛГОРИТМОВ КЛАССИФИКАЦИИ

И ПРИВЯЗКИ ДЕЛОВЫХ ДОКУМЕНТОВ
Реализацию описанных алгоритмов класси­

фикации и привязки, основанных на отождест­
влении слов, мы рассмотрим в качестве объекта
оптимизации быстродействия.

Высокоуровневая оптимизация быстродей­
ствия алгоритмов классификации и привязки
основана на создании описания структуры стра­
ницы документа и соответствующих фрагментам
документа созвездий. При профилировании ре­
ализации алгоритмов на языке С++ вычисление
расстояния между словами является “горячей точ­
кой” и занимает 20–50% от общих затрат времени
на работу алгоритма (5–15 миллисекунд на один
документ различного типа). Другими словами,
основное время занимает отождествление слов.

ПРОГРАММИРОВАНИЕ № 6 2024

	 ОПТИМИЗАЦИЯ БЫСТРОДЕЙСТВИЯ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ	 55

Цель оптимизации функций привязки и класси­
фикации обусловлена необходимостью приме­
нять эти функции не один раз для изображения
документа, а столько раз, сколько имеется описа­
ний типов различных возможных документов.

Очевидно, что при анализе фрагмента доку­
мента количество кандидатов на отождествле­
ние с текстовыми точками модели может быть
существенно меньше, чем при анализе всех рас­
познанных слов страницы. Это обеспечивает­
ся штрафными функциями f1 и f2, отношениями
между точками в созвездии и порогами, применя­
емыми при вычислении расстояний между V и W
с помощью метрик. При обучении моделей клас­
сификации (1) на документах более чем на 10 ти­
пах деловых документов объем модели составляет
более 100 точек, то при задании созвездий в ви­
де простой или вертикальной цепей требуется
не более 10 точек. Затраты на работу реализации
уменьшаются существенно.

Эффективной оптимизацией вычисления рас­
стояния между словами V и W является вычисление
на первом этапе штрафов Pen(V, W) = f1(G(V), W) +
+ f2(G2(V, W)). В случае превышения Pen(V, W)
порога d(V). Вычисление по рекуррентной форму­
ле (2), имеющей квадратичную сложность, про­
водится только в случае, когда Pen(V, W) < d(V).

Предложенная оптимизация является высоко­
уровневой и будет давать эффект независимо от
архитектурной платформы, на которой исполня­
ется реализация алгоритма. Также была предпри­
нята низкоуровневая оптимизация. Целью этого
была реальная потребность. Затраты времени на
классификацию и привязку на наборе распоз­
нанных слов являются незначительными в схе­
ме обработки, в которой классификация и при­
вязка полей документа проводится один раз для
каждого образа документа. Если же классифика­
ция и привязка проводятся многократно для не­
скольких типов документа и многократно приме­
няются к одному набору распознанных слов, то
затраты времени увеличиваются вместе с числом
применяемых типов. Опишем две оптимизации,
направленные на ускорение вычислений для ре­
альных типов центральных процессоров.

Первая оптимизация была связана с вы­
числением функции substCost(s, c). В реализа­
ции алгоритма создавались глобальные (соот­
ветствующие документу в целом) и локальные
(соответствующие одному слову) таблицы эк­
вивалентности символов, s ≠ c для которых
substCost(s, c) = 0. При сравнении двух символов
проводился поиск в таблице эквивалентности m_
nEquChars, имеющий целый 32-разрядный тип,

этих символов с учетом перестановки. При про­
филировании на компьютере Intel(R) Core(TM)
i7–4790 CPU3.60 GHz, 16,0 GB, Windows 7
prof 64-bit с помощью ПО MVS Analizer и Intel
VTune [15] функция substCost определилась как
“горячая точка”. Исходный и ассемблерный ко­
ды представлены на рис. 1.

Функция может быть ускорена за счет исполь­
зования 64-разрядного целого типа (рис. 2). При
использовании типа __int64 при компиляции
с помощью MSV Compiler для режима x64 коли­
чество инструкций для реализации тела цикла
уменьшается с 13 до 8. Ускорение на некоторых
типах документов составляет 10%.

Другая оптимизация была предназначена для
платформы ARM в смартфонах iPhone. Оказалось,
что в сложных сценариях многократного приме­
нения классификации и привязки реализация до­
ступа к объектам (текстовым точкам, строкам, от­
ношениям между точками) типа get_object(int id,
void *pObject) приводят к появлению горячей точ­
ки на архитектуре RISC. Это объясняется высокой
латентностью операций копирования данных из
оперативной памяти. Ускорение достигается при
отмене создания новой копии объекта и предо­
ставления непосредственного доступа к объекту.

Описанные алгоритмы были внедрены в SDK
Smart Document Engine [16], предназначенный
для распознавания гибких деловых документов.

Рис. 1. Реализация исходного варианта функции
substCost.

Рис. 2. Реализация оптимизированного варианта
функции substCost.

ПРОГРАММИРОВАНИЕ № 6 2024

56	 СЛАВИН	

Основным режимом работы SDK Smart Document
Engine является параллельный режим. Паралле­
лизация обеспечивается автоматически с помо­
щью библиотеки Intel TBB [17].

Рассмотрим другой пример оптимизации бы­
стродействия для задачи сортировки большо­
го потока деловых документов (300 000 страниц
за 8 ч). После распознавания OCR Tesseract [18]
проводилась классификация для 45 типов из­
вестных документов. Отметим, что число клас­
сов, равное 45, существенно превышает число
классов в публичных датасетах [19, 20]. Высоко­
уровневая оптимизация алгоритмов классифика­
ции проводилась с помощью выбора параметров
и представления данных для компоненты OCR
Tesseract. Существенный эффект был достигнут
за счет ограничения области распознавания в ка­
ждой из страниц. Для этого на обучающем множе­
стве была выбрана область, в которой находились
необходимые для классификации всех докумен­
тов текстовые особые точки. Результативной ока­
залась процедура бинаризации образов страниц
перед распознаванием. Первоначальной целью
бинаризации мы считали улучшение собственно
точности распознавания благодаря снятию слож­
ного фона и морфологическим операциям.

Низкоуровневая оптимизация проводилась
с помощью выбора параметров компиляции ком­
поненты Intel C++ Compiler XE15.0. Для ком­

пилятора была указана опция оптимизации для
архитектуры AVX2. Компилятор Intel позволил
оптимизировать быстродействие как Tesseract,
так и для всех других компонент системы, прежде
всего билатеральный фильтр. Ускорение за счет
высокоуровневой и низкоуровневой оптимиза­
ции составило более 50%.

Параллелизация была реализована с помо­
щью самостоятельных компонент, позволяю­
щих запустить на нескольких многоядерных уз­
лах по нескольку приложений, обрабатывающих
страницы в нескольких потоках, а входной по­
ток страниц назначается этим приложениям со­
гласно некоторому алгоритму балансировки (см.
рис. 3). Система была реализована с параллелиз­
мом без использования явного управления.

ЗАКЛЮЧЕНИЕ
В разделах 4 и 5 были рассмотрены приме­

ры высокоуровневой и низкоуровневой опти­
мизации на примере программ распознавания
документов. Описанные методы оптимизации
быстродействия программного обеспечения при­
годны для более широкого класса приложений
для обработки изображений (ПОИ).

Для разработки ПОИ важен выбор готовых или
вновь разрабатываемых программных компонент.
Этот выбор зависит от формы разработки (проект
или собственная разработка). Во всех случаях

Папка ввода Папка ввода

… …

Приложение балансировки Приложение балансировки

Приложение обработки Приложение обработки

Приложение обработки Приложение обработки

Папка обмена Папка обмена

Приложение импорта в ЭА

… …

Рис. 3. Параллельная реализация системы сортировки.

ПРОГРАММИРОВАНИЕ № 6 2024

	 ОПТИМИЗАЦИЯ БЫСТРОДЕЙСТВИЯ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ	 57

уместны оценка сложности выбранных алгорит­
мов и макетирование ПОИ. Необходимым этапом
оптимизации является определение требований
к быстродействию программного приложения.

С самого начала разработки важнейшим ин­
струментом высокоуровневой и низкоуровневой
оптимизации является профайлер. Этот инстру­
мент применяется для анализа профиля, выбора
горячих точек и уточнения ограничений на время
выполнения горячих точек. На начальных этапах
разработки является полезным анализ исходно­
го кода на эмуляторах будущей вычислительной
платформы, в том числе моделирование задержек
в подсистеме памяти [21]. Выбор представления
изображения может внести существенный вклад
в ускорение алгоритма. В качестве примера мож­
но привести использование интегрального пред­
ставления для извлечения признаков Хаара [22].
При реализации искусственных нейронных сетей
для ускорения эффективен выбор размеров слоев
сети и представления данных [23, 24].

Расширенные системы инструкций SIMD
(MMX, XMM, NEON) эффективно ускоряют ал­
горитмы обработки изображений и распознава­
ние. Для применения возможностей конкретной
платформы могут использоваться как средства
компиляторов, так и интринсики. Однако для
различных вычислительных платформ различны
не только компиляторы, но и наборы интринси­
ков. Последнее следует учесть при проектирова­
нии на предыдущем этапе представления данных,
например, для нейронных сетей [23].

В предположении, что обработка изображения
занимает время, существенно превышающее вре­
мя кванта операционной системы, например, это
время превышает 100 мс, возможны два способа
распараллеливания. Первый способ состоит в ис­
пользовании средств автоматического распарал­
леливания [17], второй – непосредственное фор­
мирование потоков параллельного управления.
Распараллеливание имеет смысл проводить после
завершения высокоуровневой и низкоуровневой
оптимизации ПОИ.

Предлагаемые методы оптимизации быстро­
действия программного обеспечения пригодны не
только для реализации ПОИ, но и для вычисли­
тельных алгоритмов, в которых проводится цикли­
ческая обработка информации большого объема.

СПИСОК ЛИТЕРАТУРЫ
1.	 Acar U.A., Blelloch G.E., Harper R. Selective memo­

rization. ACM SIGPLAN Notices. 2003. V. 38. № 1.
P. 14–25.	
https://doi.org/10.1145/640128.604133

2.	 Tatarowicz A.L., Curino C., Jones E.P.C. and Madden S.
Lookup Tables: Fine-Grained Partitioning for Distrib­
uted Databases. IEEE28th International Conference
on Data Engineering. 2012. P. 102–113.	
https://doi.org/10.1109/ICDE.2012.26

3.	 Harris D.M., Harris S.L. Digital Design and Comput­
er Architecture, 2nd Edition. Morgam Kaufmann is an
imprint of Elsevier Inc., Waltham, 2013. 720 p.

4.	 Rusiñol M., Frinken V., Karatzas D., Bagdanov A.D.,
Lladós J. Multimodal page classification in Administra­
tive document image streams. In: IJDAR. 2014. V. 17.
№ 4. P. 331–341.	
https://doi.org/10.1007/s10032-014-0225-8

5.	 Slavin O.A., Pliskin E.L. Method for analyzing the
structure of noisy images of administrative docu­
ments. Bulletin of the South Ural State University. Ser.
Mathematical Modelling, Programming & Computer
Software (Bulletin SUSU MMCS). 2022. V. 15. № 4.
P. 80–89.	
https://doi.org/10.14529/mmp220407

6.	 Slavin O.A., Farsobina V., Myshev A.V. Analyzing the
content of business documents recognized with a large
number of errors using modified Levenshtein distance.
Cyber-Physical Systems: Intelligent Models and Algo­
rithms. Springer Nature Switzerland AG. 2022. V. 417.
P. 267–279.	
https://doi.org/10.1007/978-3-030-95116-0

7.	 Bellavia F. SIFT Matching by Context Exposed. IEEE
Transactions on Pattern Analysis and Machine Intelli­
gence. 2022.	
https://doi.org/10.1109/TPAMI.2022.3161853

8.	 Bay H., Tuytelaars T., Van Gool Luc. SURF: Speeded
Up Robust Features. Computer Vision and Image Un­
derstanding – CVIU. 2003. V. 110. № 3. P. 404–417.

9.	 Du X., Wumo P., Bui T.D. Text line segmentation in
handwritten documents using Mumford–Shah model.
Pattern Recognition. 2009. V. 42. P. 3136–3145.	
https://doi.org/10.1016/j.patcog.2008.12.021

10.	 Maraj A., Martin M.V., Makrehchi M. A More Effec­
tive Sentence-Wise Text Segmentation Approach Us­
ing BERT. In: Lladós J., Lopresti D., Uchida S. (eds)
Document Analysis and Recognition – ICDAR2021.
Lecture Notes in Computer Science, Springer, Cham.
2021. V. 12824.	
https://doi.org/10.1007/978-3-030-86337-1_16

11.	 Kravets A.G., Salnikova N.A., Shestopalova E.L. Deve­
lopment of a Module for Predictive Modeling of Tech­
nological Development Trends. Cyber-Physical Sys­
tems. 2021. P. 125–136.	
https://doi.org/10.1007/978-3-030-67892-0_11

12.	 Sabitov A., Minnikhanov R., Dagaeva M., Katasev A.,
Asliamov T. Text Classification in Emergency Calls
Management Systems. Cyber-Physical Systems. 2021.
P. 199–210.	
https://doi.org/10.1007/978-3-030-67892-0_17

13.	 Deza M.M., Deza E. Encyclopedia of distances.
Springer-Verlag, Berlin, xiv+590 pp. (2009)

ПРОГРАММИРОВАНИЕ № 6 2024

58	 СЛАВИН	

14.	 Yujian L., Bo L. A Normalized Levenshtein Distance
Metric // IEEE Transactions on Pattern Analysis and
Machine Intelligence. V. 29. № 6. P. 1091–1095.	
https://doi.org/10.1109/TPAMI.2007.1078 (2007)

15.	 Intel® VTune™ Profiler Performance Analysis Cook­
book. https://www.intel.com/content/www/us/en/
docs/vtune-profiler/cookbook/2023–2/overview.html.
Accessed 23 Sep. 2023.

16.	 Smart Document Engine – automatic analysis and
data extraction from business documents for desktop,
server and mobile platforms. https://smartengines.
com/ocr-engines/document-scanner. Accessed 23
Sep. 2023.

17.	 Intel(R) oneAPI Threading Building Blocks (oneTBB)
Developer Guide and API Reference. https://www.
intel.com/content/www/us/en/docs/onetbb/develop­
er-guide-api-reference/2021–10/overview.html. Ac­
cessed 23 Sep. 2023.

18.	 OCR Tesseract. https://github.com/tesseract-ocr/tes­
seract. Accessed 23 Sep. 2023.

19.	 NIST Special Database. https://www.nist.gov/srd/
nist-special-database‑2. Accessed 23 Sep. 2023.

20.	 Tobacco‑3482. https://www.kaggle.com/patrickaudri­
az/tobacco3482jpg. Accessed 23 Sep. 2023.

21.	 Kravets A.G., Egunov V. The Software Cache Optimiza­
tion-Based Method for Decreasing Energy Consump­
tion of Computational Clusters // Energies [Special Is­
sue Smart Energy and Sustainable Environment]. 2022.
V. 15. № 20. P. 7509.	
https://doi.org/10.3390/en15207509

22.	 Crow F.C. Summed-area tables for texture mapping
ACM SIGGRAPH Computer Graphics. 1984. V. 18.
№ 3. P. 207–212.

23.	 Trusov A., Limonova E., Nikolaev D., Arlazarov V.V. 4.6-
bit Quantization for Fast and Accurate Neural Network
Inference on CPUs // Mathematics. 2024. V. 12. № 5.
P. 651.	
https://doi.org/10.3390/math12050651

24.	 Rybakova E.O., Limonova E.E., Nikolaev D.P. Fast
Gaussian Filter Approximations Comparison on SIMD
Computing Platforms // Applied Sciences. 2024. V. 14.
№ 11. P. 4664.	
https://doi.org/10.3390/app14114664

OPTIMIZATION OF SOFTWARE PERFORMANCE
FOR CLASSIFICATION AND LINKING
OF ADMINISTRATIVE DOCUMENTS

© 2024 O. A. Slavina, b
a Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences

44-2 Vavilova str, Moscow, 119333 Russia
b LLC Smart Engines Service

9 Prospect 60-Letiya Oktyabrya, Moscow, 117312 Russia

The paper discusses technologies for optimizing software performance. Optimization methods are divided in­
to high-level and low-level, as well as parallelization. An algorithm for classifying and linking fields in a recog­
nized image of an administrative document is described. The features of the implementation of classification
and linking tasks are listed, consisting of the use of constellations of text feature points and the modified Lev­
enshtein distance. SDK Smart Document Engine and OCR Tesseract were used. Several ways are described
to optimize the performance of the functions for classifying and linking document content. Optimization of
the performance of the system for sorting a stream of images of administrative documents is also described.
The proposed methods for optimizing software performance are suitable not only for implementing image
processing algorithms but also for computational algorithms in which cyclic information processing is carried
out. The method can be applied in modern CAD systems to analyze the content of recognized textual files.

Keywords: document recognition, flexible document, rigid document, text feature keypoint, acceleration

