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Оптимизационные задачи поиска в дискретном пространстве и, в частности, бинарном, где пере‑
менная может принимать только два значения, имеют большое прикладное значение. В статье пред‑
лагается новый популяционный алгоритм дискретной оптимизации, основанный на распределени‑
ях вероятностей переменных. Распределения определяют вероятность выбора дискретных значений 
переменных при поиске и  формируются с  помощью трансформации целевых значений решений 
в их весовые коэффициенты. Работоспособность алгоритма оценивалась на унимодальных и муль‑
тимодальных тестовых функциях с бинарными переменными. Результаты эксперимента показали 
высокую эффективность предлагаемого алгоритма на оценках сходимости и стабильности.
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1. ВВЕДЕНИЕ
Решение задач оптимизации является необхо‑

димостью практически во всех сферах жизнедея‑
тельности человека. Настоящая работа сосредо‑
точена на комбинаторной оптимизации, которая 
занимается проблемами нахождения оптимума 
с дискретными значениями возможных решений. 
Одним из частных случаев этой проблемы явля‑
ется бинарная оптимизация, в  которой элемен‑
ты вектора решения могут принимать только два 
значения. Практическое применение таких задач 
весьма обширно. В области медицины бинарная 
оптимизация применялась для диагностики опу‑
холей головного мозга  [1], нахождения подмно‑
жеств согласованных признаков при прогнозиро‑
вании эффективности реабилитации пациентов 
после коронавирусной инфекции [2], классифи‑
кации сложных заболеваний [3], классификации 
аритмии по электрокардиограмме [4]. В экономи‑
ческой сфере для выбора издателей журналов при 
размещении рекламы  [5], планировании рабо‑
чего процесса [6], планировании выпуска новой 
версии программного обеспечения  [7], проек‑
тировании производственных ячеек  [8]. В  науке 
и технике бинарная оптимизация использовалась 

для нахождения подмножества информативных 
признаков при построении прогностических си‑
стем [9–11], восстановлении нагрузки в первич‑
ных распределительных сетях  [12], диагностики 
неисправности энергосистем [13], решении про‑
блемы позиционирования антенны [14], проекти‑
ровании сварных балок [15], разделение аппарат‑
ного и программного обеспечения во встроенных 
системах  [16]. Так же в  [17] отмечается, что по‑
мимо чисто комбинаторных задач, задачи с  ве‑
щественными числами могут быть представлены 
в двоичном виде и решены в дискретном число‑
вом пространстве.

Для решения задач бинарной оптимизации 
применяют два типа методов. Первый тип – это 
традиционные детерминированные методы оп‑
тимизации, а  второй тип основан на стохасти‑
ческих, недетерминированных алгоритмах. Тра‑
диционными являются методы релаксации, 
Лагранжа, ветвей и границ, целочисленное про‑
граммирование  [18, 19]. Эти методы являют‑
ся трудозатратными и  предназначены для ре‑
шения задач небольших размерностей, что на 
практике встречается очень редко. Кроме того, 
большинство традиционных методов требуют 
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аналитическое задание целевой функции, а так‑
же ее дифференцируемость и  непрерывность. 
Задачи большой размерности с  множеством ло‑
кальных оптимумов значительно ухудшают по‑
иск традиционных методов.

Недетерминированные методы, представляе‑
мые метаэвристическими алгоритмами  [20–23], 
устраняют вышеперечисленные проблемы. В от‑
личие от традиционных методов данные алгорит‑
мы не подвергнуты “застреванию” в  локальных 
оптимумах, в меньшей степени зависят от исход‑
ных отправных точек, не ограничены видом целе‑
вой функции и способны решать оптимизацион‑
ную проблему “черного ящика” [24].

В  [25] доказано, что не существует эвристи‑
ческого алгоритма, который мог бы работать до‑
статочно эффективно для решения всех задач оп‑
тимизации. Разработанные в  настоящее время 
алгоритмы дают удовлетворительные результаты 
при решении некоторых задач, но не всех. Поэ‑
тому в этой области ведутся активные исследова‑
ния, в результате чего предлагаются новые эври‑
стические алгоритмы.

Цель настоящей работы заключается в разра‑
ботке эффективного алгоритма дискретной опти‑
мизации, конкурирующего с популярными алго‑
ритмами в бинарном пространстве поиска.

Основной научный вклад работы представлен 
следующими пунктами.

1.	Разработан новый популяционный метаэв‑
ристический алгоритм оптимизации для поиска 
в дискретном пространстве. Алгоритм использует 
распределения вероятностей для выбора значе‑
ний переменных. Распределения формируются 
с  помощью трансформации целевых значений 
решений в весовые коэффициенты.

2.	Эмпирически доказана эффективность 
предложенного алгоритма для поиска в бинарном 
пространстве с  помощью критериев сходимости 
и  стабильности. Статистический тест Уилкок‑
сона показал значимое преимущество предлага‑
емого алгоритма по сравнению с  генетическим 
алгоритмом и  алгоритмом роящихся частиц для 
оптимизации унимодальных и мультимодальных 
тестовых функций.

Остальная часть статьи организована следую‑
щим образом. В п. 2 рассмотрены подходы и ме‑
тоды решения задач бинарной оптимизации с по‑
мощью метаэвристических алгоритмов; в  п.  3 
представлен новый алгоритм и детали его работы; 
в п. 4 описана экспериментальная часть исследо‑
вания; в п. 5 обсуждены полученные результаты; 
в заключении сделаны выводы о проделанной ра‑
боте.

2. БЛИЗКИЕ РАБОТЫ 
ПО ТЕМЕ ИССЛЕДОВАНИЯ

Наиболее популярные алгоритмы бинарной 
оптимизации относятся к  алгоритмам роевого 
интеллекта. Подобно эволюционным они осно‑
ваны на механизмах природы и  представляют 
собой модель скоординированного поведения 
объектов, которые могут быть представителя‑
ми флоры, фауны или физическими объектами. 
Эволюционные вычисления основаны на конку‑
ренции и естественном отборе, тогда как роевой 
интеллект опирается главным образом на сотруд‑
ничество агентов [26].

Большинство алгоритмов роевого интеллекта 
разработаны для непрерывной оптимизации и для 
того чтобы осуществлять поиск в бинарном про‑
странстве применяются механизмы адаптации, 
называемые бинаризацией  [27]. Самым попу‑
лярным методом бинаризации является исполь‑
зование трансформационных функций, которые 
переводят непрерывные значения элементов век‑
торов решений в  значения из диапазона  [0, 1]. 
Затем применяется правило бинаризации, при 
котором решение преобразуется в бинарное зна‑
чение из множества {0, 1}. С помощью функций 
трансформации были адаптированы алгоритмы 
роящихся частиц  [17, 28], искусственных водо‑
рослей [29], шимпанзе [30], роя сальпов [31], стаи 
китов  [32]. В  [28] были исследованы различные 
варианты функций трансформации для алгорит‑
ма роящихся частиц. Лучшая сходимость была 
достигнута алгоритмом с  V‑образной функцией 
трансформации.

Метод бинаризации на основе модификации 
алгебраических операций преобразует веще‑
ственные операторы, используемых в  формулах 
перемещения частиц, в  их логические аналоги, 
что позволяет оперировать бинарными решени‑
ями. Например, вместо сложения используется 
операция дизъюнкции, а  вместо умножения  – 
конъюнкция. С  помощью данного метода были 
адаптированы алгоритмы роящихся частиц  [33], 
мозгового штурма [13], роста деревьев [34], лету‑
чих мышей [33], непрерывной муравьиной коло‑
нии [5], кукушкин поиск [35], черной дыры [36].

Квантовый метод бинаризации тоже пре‑
образует операторы непрерывного алгорит‑
ма. В  этом методе каждое допустимое решение 
имеет позицию и вектор квантования, который 
содержит вероятности принять значение 1 для 
соответствующего элемента решения. Вектор 
квантования обновляются с  учетом положений 
глобальных и  локальных лидеров. Используя 
данный метод, были адаптированы алгоритмы 
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роящихся частиц  [37], искусственных водорос‑
лей [7], гравитационный поиск [38], муравьиной 
колонии [39].

Среди алгоритмов эволюционного интел‑
лекта для бинарной оптимизации широко при‑
менялся генетический алгоритм [40–42]. Также 
были предложены его модификации, так, напри‑
мер, в работе [43] представлен гибрид на основе 
генетического алгоритма и алгоритма роящихся 
частиц. Сначала оба алгоритма находят реше‑
ния независимо друг от друга, а затем результаты 
объединяются с  помощью метода средневзве‑
шенной комбинации. После этого применяется 
локальный поиск для нахождения окончатель‑
ного решения.

Оценка эффективности алгоритмов в  боль‑
шинстве исследований проводилась при реше‑
нии определенных прикладных задач. Для объ‑
ективной оценки работы алгоритмов применяют 
тестовые функции, которые позволяют опреде‑
лить эффективность при нахождении оптимума 
различных целевых функций, например, уни‑
модальных, мультимодальных, овражных, раз‑
рывных, выпуклых, вогнутых. При бинарной 
оптимизации применяют тестовые функции для 
поиска в  непрерывном пространстве. Бинарное 
пространство поиска образуют путем дискрети‑
зации непрерывного и  последующим бинарным 
кодировании дискретных значений  [28, 44–46].

3. НОВЫЙ ДИСКРЕТНЫЙ 
АЛГОРИТМ ОПТИМИЗАЦИИ

В  настоящей работе рассматривается про‑
блема оптимизации, в  которой минимизирует‑
ся критерий эффективности. В  данном разделе 
представлен оригинальный дискретный метаэ‑
вристический алгоритм оптимизации на основе 
распределения вероятностей с  трансформацией 
целевых значений (Probability Distributions with 
Transformation of target values, PDT). Алгоритм 
является итерационным, где на каждой итера‑
ции формируется вероятностная модель. Модель 
определяет вероятность появления конкретного 
дискретного значения переменной. Вероятно‑
сти формируются на основе частоты появления 
дискретного значения каждой переменной сре‑
ди решений популяции, причем меньшее значе‑
ние целевой функции должно увеличивать вклад 
решения в  повышение вероятности. Для этого 
вводятся трансформационные функции, кото‑
рые переводят значение целевой функции реше‑
ния популяции в весовой коэффициент. На рис. 1 
представлена блок-схема алгоритма.

На этапе инициализации определяется началь‑
ная популяция решений Pop случайным или иным 
образом. Далее рассчитываются весовые коэф‑
фициенты решений популяции w. Весовой коэф‑
фициент принимает значение из диапазона [0, 1], 
чем меньше целевое значение решения, тем боль‑
ше значение w. Для того чтобы сформировать ве‑
совые коэффициенты из целевых значений пред‑
лагается использовать функции трансформации. 
В качестве таких функций, например, могут быть 
использованы следующие: TL – линейная функ‑
ция, TS – сигмоида, TQ – квадратичная функция, 
TTh – гиперболический тангенс. Графики функ‑
ций представлены на рис. 2. Область определения 
функций ограничена отрезком [fmin, fmax], где fmin 

Начало

Инициализировать популяцию и вычислить 
целевые значения

Вычислить весовые коэффициенты  
решений популяции

Вычислить распределения вероятностей

Сгенерировать новые решения

Изменить новые решения (мутация)

Вычислить целевые значения популяции

Обновить популяцию

Достигнуто число
итераций?

Извлечь из популяции лучшее решение

Конец

Нет

Да

Рис. 1. Блок-схема алгоритма.



ПРОГРАММИРОВАНИЕ       № 6       2024

38	 САРИН	

и  fmax – минимальное и максимальное значение 
целевой функции в  популяции соответственно, 
а  f – текущее значение. Аналитические выраже‑
ния функций трансформации показаны ниже:

	 T f
f f
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−

−
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max min
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e

s f f f f
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После получения весовых коэффициентов 
решений рассчитываются распределения веро‑
ятностей. Каждое распределение состоит из ве‑
роятностей получить переменной определенное 
дискретное значение. Вероятности рассчитыва‑
ются на основе значений переменных и весовых 
коэффициентов решений.

С помощью полученных распределений гене‑
рируется новая популяция и  подвергается мута‑
ции, чтобы предотвратить преждевременную схо‑
димость. Далее популяция обновляется лучшими 
решениями текущей и  новой популяции. После 
этого снова рассчитываются весовые коэффи‑
циенты решений, и  продолжается новый цикл. 
По  завершении заданного количества итераций 
из популяции выбирается лучшее решение.

Ниже представлено пошаговое описание алго‑
ритма.

Вход: Установить размер популяции N, чис‑
ло итераций MaxIter, вероятность мутации pa 
и функцию трансформации T. Обозначим ljk k-е 
дискретное значение j-й переменной.

Выход: R – найденное решение.
Начало
Шаг 1. Инициализация.
Случайным или иным образом сгенерировать 

популяцию решений Pop =  [Pop1, Pop2, …, PopN] 
и вычислить соответствующее целевое значение f 
= [f1, f2, …, fN].

Шаг 2. Инициализировать счетчик итераций 
t = 1. Начало итерационного процесса.

Шаг 3. Вычислить весовые коэффициенты 
решений популяции Pop с  помощью функции 
трансформации T :

	 w T fi i= ( ),
где i = 1, ..., N.

Шаг 4. Вычислить распределения вероятно‑
стей.

Для каждого дискретного значения k перемен‑
ной j определить сумму весовых коэффициентов 
решений Pop, которые принимают данное дис‑
кретное значение k. Обозначим такую сумму Sjk, 
где j = 1, …, n, k = 1, …, m:

	 S w
Pop l

jk i
ij jk

i

N
= ⋅

=



=
∑

1
01

,
,
если

иначе
.

Вычислить эмпирическую вероятность появ‑
ления k-го значения переменной j:

	 P
S

S
jk

jk

jk
k

m
=

=
∑

1

.

Шаг 5. Сгенерировать новые решения.
Формируется популяция новых решений 

Popnew на основе вероятностей P каждой перемен‑
ной:
	 Pop lij jk

new = ,

где k удовлетворяет условию pk–1 < rand (0,1) ≤ pk,

	 p P P P Pj j j jmk
m= +



=∑0 1 1 2 1, , , , ,

j = 1, …, n, k = 1, …, m.
Шаг 6. Изменить новые решения (Мутация).
Изменить значения элементов векторов ре‑

шений Popnew с вероятностью pa. Новые значения 
выбираются случайным образом из области зна‑
чений элемента вектора решений.

Шаг 7. Вычислить значение целевых функций 
fi

new, где i = 1, …, N, для каждого решения Popnew.

w

1

0.8 

0.6 

0.4

0.2 

0
fmin fmaxf

TL

TS

TQ 
TTh

Рис. 2. Графики функций трансформаций для пере‑
вода целевых значений в веса решений.
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Шаг 8. Обновить популяцию Pop путем вы‑
бора N лучших решений из множества решений 
Pop ∪ Popnew. Обновить значения целевых функ‑
ций fi согласно решениям Pop.

Шаг 9. Проверка остановки алгоритма.
Если t < MaxIter, то t = t + 1 и перейти на Шаг 3, 

иначе перейти на Шаг 10.
Шаг 10. Извлечь в R лучшее решение из попу‑

ляции Pop.
Конец

4. ЭКСПЕРИМЕНТ
В  настоящем разделе представлены экспери‑

менты c разработанным дискретным алгорит‑
мом оптимизации на основе распределения ве‑
роятностей с трансформацией целевых значений. 
Алгоритм тестировался для бинарной проблемы 
оптимизации, т.  е. когда переменные принима‑
ют только два значения. В  экспериментальном 
исследовании использовались восемнадцать раз‑
личных унимодальных и  мультимодальных эта‑
лонных функции, широко применяемых для те‑
стирования алгоритмов оптимизации [28, 44–46]. 
В  табл.  1 представлены их характеристики, а  на 
рис. 3 графики в двумерном пространстве поис‑
ка. Функции f1–f11 являются унимодальными, 
т. е. содержат только один глобальный оптимум. 
Функции f12–f18 являются мультимодальными 
и  содержат один глобальный и  множество ло‑
кальных оптимумов, число которых экспоненци‑
ально растет с увеличением размерности задачи. 
Эксперимент проводился согласно методике ра‑
боты [44].

Реализация алгоритма осуществлялась на язы‑
ке MATLAB в среде программирования MATLAB 
R2022b. Программа доступна по ссылке https://
cloud.tusur.ru/index.php/s/395znYyx87rRoDP. 
Эксперимент проводился на персональном ком‑
пьютере под управлением операционной систе‑
мы Windows 10 с 8 Гб оперативной памяти и про‑
цессором Intel Core i7-12700.

 4.1. Дискретизация непрерывных значений
Поскольку алгоритм является дискретным 

и  оперирует в  эксперименте бинарными векто‑
рами решений, элементы которых принимают 
значение 0 или 1, проводится кодировка веще‑
ственных значений бинарным вектором. Проце‑
дура перевода бинарного вектора решения в зна‑
чения вещественных переменных представлена 
на рис. 4. Данная процедура выполняется всякий 
раз, когда алгоритму необходимо рассчитать зна‑
чение целевой функции. Количество переменных 
в эксперименте 5, количество битов для кодиро‑

вания значения каждой переменной – 15. Таким 
образом, величина бинарного вектора решений 
составляет n = 5 × 15 = 75 элементов. Количество 
дискретных значений, которое может иметь ка‑
ждая переменная, соответствует 215. Эти значения 
определяются с  помощью равномерного кванто‑
вания на диапазоне поиска переменной. Шаг дис‑
кретизации определяется следующим образом:

	 ∆ =
−

−
h

R Rmax min

2 115 ,

где Rmin и Rmax – нижняя и верхняя граница ди‑
апазона значений переменной соответственно. 
Фактически, бинарное значение переменной  – 
это бинарное представление порядкового номера 
дискретного значения на диапазоне  [Rmin, Rmax] 
с шагом дискретизации Δh.

Если переменная x кодируется бинарным век‑
тором [b1, …, b15], то вещественное значение этой 
переменной определяется следующим образом:

	 x R h bi
i

i
= + ∆ ⋅ −

=
∑min 2 1

1

15
.

4.2. Критерии эффективности
Для оценки эффективности работы алгоритма 

применялись два критерия  [47]. Первый оцени‑
вает сходимость алгоритма и определяется сред‑
ним отклонением найденного целевого значения 
от фактического:

	 E
n

f f
run

i
i

nrun

= − ′
=
∑1

1
,

где nrun – количество запусков алгоритма; fi – най‑
денное алгоритмом значение целевой функции 
в i-м запуске; f ʹ – фактическое значения оптиму‑
ма целевой функции. Второй критерий оценивает 
стабильность работы недетерминированного алго‑
ритма и определяется среднеквадратичным откло‑
нением найденного оптимума целевой функции:

	 STD
n

f M
run

i
i

nrun

= −( )
=
∑1 2

1
,

где M – среднее значение целевой функции;

	 M
f

n

i
i

n

run

run

= =
∑

1 .

Меньшее значение обоих критериев соответ‑
ствует лучшему значению эффективности.

Кроме вышеприведенных критериев в работе 
представлены графики сходимости алгоритмов, 
позволяющие оценить скорость сходимости 
стохастических алгоритмов и  показывающие 
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Рис. 3. Графики тестовых функций в двумерном пространстве поиска.

Бинарный  
вектор решения
Binary solution
vector

Вещественный  
вектор решения
Real solution vector

… … … … …

… …… ……

Рис. 4. Перевод бинарного вектора решения в непрерывный вектор для вычисления значения целевой функции.
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Таблица 1. Тестовые функции эксперимента

№ Целевая функция Диапазон поиска Значение оптимума 
функции

1 f xi
i

n

1
2

1
x( ) =

=
∑ [–100; 100] 0

2 f ixi
i

n

2
4

1
x( ) =

=
∑ [–2.56; 2.56] 0

3 f xi
i

n

3
2

1
0 5x( ) = +( )

=
∑ . [–10; 10] 0

4 f ix randi
i

n

4
4

1
0 1x( ) = + ( )

=
∑ , [–2.56; 2.56] 0

5 f xi
n

i5 1x( ) = ( )=max [–100; 100] 0

6 f x xi
i

n

i
i

n

6
1 1

x( ) = +
= =
∑ ∏ [–100; 100] 0

7 f x x xi i i
i

n

7 1
2 2 2

1

1
100 1x( ) = −( ) + −( )



+

=

−

∑ [–2; 2] 0

8 f ixi
i

n

8
2

1
x( ) =

=
∑ [–10; 10] 0

9 f x i x xi i
i

n

9 1
2 2

1
2

2
1 2x( ) = −( ) + −( )−

=
∑ [–10; 10] 0

10 f xi
i

i

n

10
1

1
x( ) =

+

=
∑ [–1; 1] 0

11 f x j
j

i

i

n

11
1

2

1
x( ) =











==
∑∑ [–6; 6] 0

12 f x x xi
i

n

i i
i

n

12
2

1
1

2
1x( ) = −( ) −

=
−

=
∑ ∑ [–10; 10] –30 (при n = 5)

13 f x xi
i

n

i
i

n

13
2

1

2

1
1 2 0 1x( ) = −













+
= =
∑ ∑cos .π [–25; 25] 0

14

f x x xi i
i

n

14
2

1
2 2

1
1

1
0 1 3 1 1 3x( ) = ( ) + −( ) + ( )( )
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 ++

=

−
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зависимость критерия Е от итерации [28, 44, 45]. 
Значение E, приводимое на графиках, является 
средним значением по запускам алгоритма.

4.3. Выбор функции трансформации 
целевых значений

Для выбора функции трансформации целевых 
значений в весовые коэффициенты решений бы‑
ли использованы следующее функции: TL – ли‑
нейная функция, TS – сигмоида, TQ – квадратич‑
ная функция, TS – гиперболический тангенс.

Алгоритм PDT с  разными функциями транс‑
формации был использован для поиска оптимума 
тестовых функций. Было осуществлено 30 запусков 
на каждой тестовой функции. Полученные значе‑
ния критериев эффективности приведены в табл. 2.

Для улучшения оценки эффективности эво‑
люционных алгоритмов в [47] отмечается, что не‑
обходимо проводить статистические тесты. Недо‑
статочно сравнивать алгоритмы по значениям E 
и STD [48], необходимо провести статистический 
тест, чтобы доказать, что предлагаемый новый 

№ Целевая функция Диапазон поиска Значение оптимума 
функции

15 f x xi i
i

n

15
1

10 2 10x( ) = − ( ) +( )
=
∑ cos π [–2; 2] 0

16 f x
x

ii
i

n
i

i

n

16
2

1 1

1
4000

1x( ) = −






+

= =
∑ ∏cos [–10; 10] 0

17
f e e

n
x

n
xi

i

n

i
i

n

17

0 2 1 1 2
20

2

1 1x( ) = −
∑

−
∑

+
−











 ( )









= =

, cos π
220 + e

[–3; 3] 0

18 f x xi i
i

n

18
1

x( ) = − ( )
=
∑ sin [–15; 15] –50.0929 (при n = 5)

Таблица 2. Оценка эффективности алгоритма PDT с различными функциями трансформации

f
TL TS TQ TTh

E STD E STD E STD E STD
f1 0.000047 0.000000 0.000049 0.000014 0.000047 0.000000 0.000059 0.000034
f2 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
f3 0.402924 0.231313 0.454002 0.280296 0.478528 0.240684 0.498614 0.281871
f4 0.005653 0.004306 0.006070 0.004650 0.005624 0.003659 0.005170 0.003590
f5 0.041098 0.096504 0.030112 0.026176 0.042929 0.140588 0.037639 0.042328
f6 0.015259 0.000000 0.015259 0.000000 0.015666 0.002229 0.015463 0.001114
f7 2.629031 1.500038 2.511857 1.363161 3.214144 1.576402 3.036793 1.573228
f8 0.000001 0.000000 0.000001 0.000000 0.000001 0.000000 0.000003 0.000003
f9 0.885491 0.863594 0.850277 0.472212 0.803704 0.485206 0.835841 0.739384
f10 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
f11 0.000001 0.000000 0.000001 0.000000 0.000001 0.000000 0.000001 0.000002
f12 0.239046 0.613565 0.870265 1.432694 0.885326 2.910895 0.362761 0.898002
f13 0.119874 0.040684 0.149874 0.062972 0.163207 0.071839 0.123821 0.056141
f14 0.057948 0.077372 0.058916 0.059387 0.053028 0.053763 0.033397 0.046236
f15 0.331668 0.603435 0.199166 0.404835 0.398790 0.618058 0.099557 0.303747
f16 0.036349 0.016301 0.028747 0.014743 0.029202 0.015521 0.034756 0.019396
f17 0.000374 0.000041 0.000374 0.000041 0.000367 0.000000 0.000389 0.000069
f18 0.407336 1.540216 0.405125 1.540966 0.610862 1.858916 0.000837 0.003885

Таблица 1. Окончание
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алгоритм представляет собой значительное улуч‑
шение по сравнению с другими существующими 
методами.

Чтобы судить о том отличаются ли статистиче‑
ски значимо результаты работы алгоритма с раз‑
личными функциями трансформации друг от 
друга, был проведен непараметрический стати‑
стический тест Фридмана на уровне значимости 
α = 0.05. Значения асимптотической значимости 
p-value, которые меньше 0.05, можно рассматри‑
вать как убедительное свидетельство против ну‑
левой гипотезы H0 [47].

Тест Фридмана множественных сравнений не 
выявил отклонение гипотезы H0 для обоих кри‑
териев. Гипотеза H0 здесь утверждение об отсут‑
ствии значимых различий между вариантами 
алгоритма с  различными функциями трансфор‑
мации. Асимптотическая значимость для кри‑
терия Е соответствует значению p-value  =  0.757, 
а  для критерия STD значению p-value  =  0.590. 
Таким образом, выбор рассмотренных функций 
трансформации существенно не повлияет на эф‑
фективность работы алгоритма. В  дальнейшем 
будет использоваться линейная функция.

4.4. Параметры эксперимента
Эффективность предлагаемого алгоритма 

PDT оценивалась в  сравнении с  такими попу‑
лярными алгоритмами оптимизации как генети‑
ческий алгоритм (GA) и бинарный алгоритм ро‑
ящихся частиц (BPSO). Алгоритмы выполнялись 
в одинаковых условиях. Общие настройки имели 
следующие значения. Размер популяции  – 30, 

количество итераций – 100, количество перемен‑
ных – 5, число бит на одну переменную – 15, ко‑
личество запусков алгоритма на каждую тестовую 
функцию  – 30. Специфичные параметры алго‑
ритмов GA и  BPSO были установлены в  значе‑
ния, рекомендованные в [28, 45]. Значения спец‑
ифичных параметров приведены в табл. 3.

4.5. Результаты эксперимента
В результате выполнения эксперимента были 

получены значения критериев эффективности 
каждого алгоритма. Данные значения приведе‑
ны в табл. 4. Последняя строка таблицы содержит 
средние значения показателей. На рис. 5 показаны 

Таблица 3. Значения параметров алгоритмов
Алгоритм Параметр Значение

PDT
Функция 
трансформации T

Линейная TL

Вероятность мутации pa 0.05

GA

Вид селекции Рулеточная
Вид скрещивания 
(вероятность)

Одноточечный 
(0.9)

Вид мутации 
(вероятность)

Равномерный 
(0.005)

BPSO

Коэффициенты C1, С2 2, 2
Вес инерции W Линейно 

уменьшается 
с 0.9 до 0.4

Максимальная скорость 6
Функция 
трансформации

V‑образная

Таблица 4. Оценки эффективности алгоритмов

f
GA BPSO PDT

E STD E STD E STD
f1 0.005349 0.028272 27.845964 37.522025 0.000047 0.000000
f2 0.000000 0.000000 0.008293 0.018114 0.000000 0.000000
f3 0.440548 0.254233 0.799580 0.513039 0.402924 0.231313
f4 0.021143 0.046160 0.067826 0.054019 0.005653 0.004306
f5 0.649841 1.354239 5.634938 3.111477 0.041098 0.096504
f6 0.016683 0.004988 4.112874 3.333243 0.015259 0.000000
f7 3.113280 2.491653 4.288055 2.188550 2.629031 1.500038
f8 0.000009 0.000025 0.804053 0.875332 0.000001 0.000000
f9 10.522179 24.073438 1.827357 1.320775 0.885491 0.863594
f10 0.000000 0.000000 0.000166 0.000383 0.000000 0.000000
f11 0.000004 0.000008 0.303480 0.574945 0.000001 0.000000
f12 0.760543 1.068967 0.571626 0.780258 0.239046 0.613565
f13 0.457784 0.259707 0.418610 0.159854 0.119874 0.040684
f14 0.072918 0.062301 0.054331 0.053543 0.057948 0.077372



ПРОГРАММИРОВАНИЕ       № 6       2024

44	 САРИН	

f
GA BPSO PDT

E STD E STD E STD
f15 1.227600 1.001766 1.408564 0.734589 0.331668 0.603435
f16 0.042970 0.016959 0.061572 0.021475 0.036349 0.016301
f17 0.000583 0.000525 0.357644 0.145604 0.000374 0.000041
f18 4.935197 6.147513 3.989981 3.238601 0.407336 1.540216
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Рис. 5. Графики сходимости алгоритмов.

Таблица 4. Окончание
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графики сходимости алгоритмов, позволяющие 
оценить скорость сходимости. Графики представ‑
лены в логарифмической шкале по оси критерия 
сходимости, что позволяет более четко отследить 
скорость сходимости алгоритмов на протяжении 
всей их работы.

5. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ
Чтобы определить, значительно ли отлича‑

ются результаты эффективности предлагаемого 
алгоритма от аналогов, воспользуемся парным 
статистическим тестом Уилкоксона  [47]. Нуле‑
вая гипотеза Н0 теста утверждает отсутствие зна‑
чимых различий в оценках эффективности срав‑
ниваемых алгоритмов. В  табл.  5 представлены 
результаты сравнения. Асимптотическая значи‑
мость для критериев Е и STD при сравнении с ге‑
нетическим алгоритмом и  алгоритмом роящих‑
ся частиц соответствует значению p-value < 0.01. 
Сумма отрицательных рангов теста превалирует 
над положительными. Это говорит о том, что зна‑
чения критериев алгоритма PDT статистически 
значимо меньше алгоритмов GA и BPSO на уров‑
не значимости α = 0.01.

Анализ рис.  5 показывает, что на начальных 
итерациях скорость алгоритма роящихся ча‑
стиц для тестов f6, f7, f9, f15 и f16 оказывается выше 
остальных алгоритмов, но начиная, примерно, 
с пятнадцатой итерации она спадает. В целом же 
алгоритм на основе распределения вероятностей 
с  трансформацией целевых значений опережает 
по скорости своих конкурентов.

6. ЗАКЛЮЧЕНИЕ
Предложенный дискретный алгоритм на ос‑

нове распределения вероятностей с трансформа‑
цией целевых значений показал статистически 
значимое улучшение показателей сходимости 
и  стабильности, таких как отклонение от опти‑
мума и среднеквадратичное отклонение целевых 
значений. Сравнения проводились с  генетиче‑
ским алгоритмом и  бинарным алгоритмом роя‑
щихся частиц. Для эксперимента использовались 
восемнадцать тестовых унимодальных и мульти‑
модальных функций. В  среднем отклонение от 
оптимума уменьшилось в 4.3 раза по сравнению 

с генетическим алгоритмом и в 10.1 раза по срав‑
нению с бинарным алгоритмом роящихся частиц. 
Полученные результаты говорят об эффективно‑
сти предложенного алгоритма для оптимизации 
в бинарном пространстве.
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Optimization problems of searching in discrete space and, in particular, binary space, where a variable can 
take only two values, are of great practical importance. This paper proposes a new population discrete op‑
timization algorithm based on probability distributions of variables. Distributions determine the probability 
of accepting one or another discrete value and are formed by transforming the target values of decisions into 
their weighting coefficients. The performance of the algorithm was assessed using unimodal and multimodal 
test functions with binary variables. The experimental results showed the high efficiency of the proposed 
algorithm in terms of convergence and stability estimates.
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