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Целью данной работы является развитие технологии сплайн-адаптивных фильтров (САФ) для ре-
ализации в реальном времени. Предложенный в работе P-САФ на базе рекуррентного штрафного 
P‑сплайна по аналогии с  классическим САФ состоит из линейной динамической и  нелинейной 
статической компонентов. Для адаптации P-САФ разработаны вычислительные схемы с различной 
топологией, что одновременно определяет способ адаптации узлов и вычисления коэффициентов 
сплайна. Это позволило повысить эффективность P-САФ по сравнению с классическим САФ и со-
кратить вычислительные затраты. Показатель эффективности MSE [dB] для P-САФ при анализе 
модельных и реальных временных рядов оказался на уровне и выше классического САФ.
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1. ВВЕДЕНИЕ
В  последние годы возрос интерес научно-

го и  инженерного сообщества к  нелинейным 
и  адаптивным моделям, а  также к  прикладным 
задачам на их основе. Обоснован подобный инте-
рес нелинейной природой многих процессов ре-
альной жизни.

Нелинейные адаптивные модели и  фильтры 
обладают хорошей гибкостью и  высокой произ-
водительностью [1–3]. Нелинейность моделей 
отражает нестационарную природу процессов, 
а  адаптивность моделей повышает эффектив-
ность их применения. Вычислительные затраты 
определяются, главным образом, принципами 
адаптации и обучения модели.

Одна из популярных идей при создании нели-
нейных фильтров основана на обновлении (адап-
тации) коэффициентов линейных фильтров. 
Наиболее популярные алгоритмы такой адапта-
ции основаны на методе наименьших квадратов 
и  его модификациях, а  также методе аффинной 
проекции. Первая группа методов имеет неболь-
шую вычислительную сложность, вторая – хоро-
шую сходимость.

Другие идеи адаптивного обучения основаны 
на нейронных сетях [5], адаптивных фильтрах 
Вольтерра [4], ядра [7], функциональной свя-

зи  [8], расширенном фильтре Калмана [6] и  пр. 
Однако подобные фильтры эффективны только 
для объектов со слабой нелинейностью. А значи-
тельная нелинейность отрицательно сказывается 
на сходимости алгоритмов адаптации и усложня-
ет вычисления, поскольку связана с увеличением 
порядка модели.

Системы реального времени наиболее требо-
вательны к быстродействию алгоритмов обработ-
ки информации и,  соответственно, к  их вычис-
лительной сложности. Поэтому в  таких системах 
адаптивные модели с  этапом обучения или с  ис-
пользованием численных методов мало пригодны.

В  этой ситуации возможен подход с  исполь-
зованием адаптивных сплайнов, интерес к  ко-
торым возрастает, как к  инструменту нелиней-
ного моделирования. Сама идея, а также термин 
“сплайн-адаптивный фильтр” (САФ) были введе-
ны в 2013 г. в работе [9] M. Scarpiniti. Концепция 
САФ включает последовательную комбинацию 
линейного фильтра и  нелинейного алгоритма 
с  функцией адаптации. Нелинейная часть в  ба-
зовой конструкции представлена интерполяци-
онным сплайном, структура которого остается 
неизменной. Для интерполяции используются 
базисные сплайны и  сплайны Катмалла–Рома 
с фиксированной матрицей коэффициентов для 
локального звена сплайна.
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Структурно модель САФ относится к  блоч-
но-ориентированному представлению и  вклю-
чает линейные и  нелинейные блоки [10, 11]. 
Линейная часть модели является временно-ин-
вариантной (динамической), а  нелинейная мо-
дель – статической (рис. 1).

Топология блоков в  САФ также может быть 
различной. Например, модель САФ [9], называ-
емая моделью Винера, представляет собой ли-
нейно-нелинейную (ЛН) модель, включающую 
линейный фильтр и  статическую нелинейную 
функцию адаптации. Другая популярная модель, 
известная как Хаммерштейн-модель, является 
нелинейно-линейной (НЛ) моделью, в  которой 
динамический и  нелинейный статический блок 
имеют обратный порядок [12]. Также существуют 
модели, которые комбинируют компоненты ЛН 
и НЛ, обеспечивая гибкость и разнообразие в ра-
боте с различными типами нелинейностей.

Концепция САФ оказалась довольно про-
дуктивной и  для теоретических исследований, 
и в прикладных задачах. Разными исследовате-
лями были разработаны и  изучены различные 
варианты САФ, например, с  использованием 
БИХ‑фильтров [13, 14], для активного контроля 
и  фильтрации разного типа помех [15, 16], для 
негауссовой среды [17, 18]. Ряд работ посвящен 
вопросам улучшения устойчивости, сходимо-
сти, анализу надежности и производительности 
[18–20].

Тем не менее, несмотря на большое количе-
ство работ по САФ, существуют определенные 
вопросы относительно его применения на прак-
тике.

САФ достаточно разработаны теоретически 
и опираются на априорную информацию о свой-
ствах входных сигналов и помех. При адаптации 
параметров САФ используются градиентные ме-
тоды оптимизации [11, 18]. Однако в реальной за-
даче желаемый сигнал часто неизвестен, а целе-
вая функция обычно мультимодальна. Еще одна 
проблема САФ связана с длительностью машин-
ного обучения, что затрудняет его использование 
в режиме реального времени.

Целью данной работы является развитие тех-
нологии САФ для реализации в  реальном вре-
мени. Для этого использована модификация 

штрафного P‑сплайна, названная здесь Р-САФ. 
В отличие от традиционных P‑сплайнов, вместо 
одного параметра сглаживания, предлагаемый 
Р-САФ позволяет изменять этот параметр в пре-
делах отдельного звена сплайна. А создание груп-
пы отсчетов ВР решает проблему выбора узлов 
сплайна.

Другая особенность P-САФ состоит в  эконо-
мичной вычислительной схеме P-САФ в виде ре-
куррентных алгебраических выражений, что по-
зволяет использовать его в реальном времени.

И наконец, модель P-САФ представляет собой 
аналитическое выражение, что повышает интер-
претируемость моделей на его основе.

2. ОПИСАНИЕ И ТОПОЛОГИЯ Р-САФ
Для реализации САФ в  реальном времени 

предлагается математическая модель в  форме 
рекуррентной сплайн-функции. Именно рекур-
рентное математическое описание делает воз-
можным использование САФ в РРВ.

Большинство известных САФ основаны на 
сглаживающих сплайнах, однако также воз-
можно использование штрафных P‑сплайнов 
и базисных B‑сплайнов [21, 22]. При этом сгла-
живающие сплайны имеют большую вычисли-
тельную сложность, что становится проблемой 
при реализации в реальном времени [23]. А, на-
пример, впервые предложенная в [9] модель САФ 
использует базисные B‑сплайны. Для базисных 
и  штрафных сплайнов оптимальность выбора 
узлов оказывает значительное влияние на слож-
ность их реализации [24]. И хотя адаптация в ре-
альном времени является трудоемкой процеду-
рой, эффективность САФ при этом существенно 
повышается.

В  теории цифровой фильтрации можно вы-
делить два подхода: цифровой фильтр (ЦФ) 
с конечной импульсной характеристикой (КИХ) 
и  бесконечной импульсной характеристи-
кой (БИХ). В  САФ, в  основном, применяют-
ся КИХ‑фильтры. Их достоинствами являются 
линейная фазовая характеристика и  устойчи-
вость. Эти и другие достоинства КИХ объясня-
ются отсутствием обратной связи по выходным 
параметрам фильтра.

x (n) КИХ- 
фильтр

Адаптация 
узлов

Сплайн- 
интерполяция

y (n)

Динамическая 
линейная часть

Статическая 
нелинейная часть

Рис. 1. Структура сплайн-адаптивного фильтра.
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Структура БИХ‑фильтров содержит обрат-
ную связь, что является причиной неустойчи-
вости и,  нередко, низкой сходимости. Однако 
БИХ‑фильтры, в отличие от КИХ‑фильтров, мо-
гут обеспечить резкость переходной зоны про-
пуска и  подавления сигнала при одинаковом 
с КИХ‑фильтрами порядке ЦФ [25].

Одним из способов описания ЦФ является 
разностное уравнение. В данной работе исполь-
зуется рекуррентная форма штрафного P‑сплай-
на, полученная с  применением вариационного 
подхода [26]. В классическом варианте сглажи-
вающий кубический сплайн S(t) может быть 
получен как решение задачи минимизации на 
всем интервале наблюдения [a, b] по отсчетам 
y i ni , , = 1 :
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где λ – сглаживающий множитель, ассоциирован 
с  параметром регуляризации Тихонова. А  сами 
слагаемые в  (1) определяют соответственно ми-
нимальную кривизну сплайна и  минимум не
вязок [27]. Кубический сплайн S(t) находится 
среди всех функций из пространства Соболева 
s W a b∈ 2

2[ , ]. Степень гладкости или штраф за 
гладкость сплайна S(t) определяется параметром 
λ. Отсюда и название штрафной P‑сплайн. Диа-
пазон параметра λ неизвестен и  обычно велик 
[10–9, 109], но при λ → 0 сплайн стремится к интер-
поляционному.

Для реализации P‑сплайна в РРВ критерий (1) 
модифицирован нами и  адаптирован отдельно 
для каждого i-го звена сплайна:
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Входные данные в (2) собраны в группы по h 
значений y y yi i

h
i

0 1, , ..., { } между крайними отсчета-

ми группы t ti
h
i

0,   для каждого i -го звена сплайна.
Предлагаемый Р-САФ позволяет изменять 

гладкость в пределах звена с помощью перемен-
ного параметра гладкости ρ, тем самым повышая 
гибкость нелинейных моделей отдельных зве-
ньев. В отличие от традиционных P‑сплайнов (1) 
с единым параметром сглаживания ρ.

Вид критерия (2) известен как блочная регуля-
ризация Тихонова [28], которая в данном случае 

определяет блок, как группу из h отсчетов. Мини-
мальный размер группы h = 3 (т. е. 4 отсчета ВР) 
определен порядком кубического сплайна. Но 
обычно h > 3 и это означает, что выборка избы-
точна и это положительно сказывается на равно-
весии данных для описания нелинейности [10].

Другой особенностью критерия (2) является 
адаптация штрафного параметра ρ в  интервале 
ρ ∈[ , ]0 1 . Нормирование сглаживающего сомно-
жителя ρ уменьшает сложность его выбора в соот-
ветствии с физическим смыслом: от максималь-
ной гладкости при ρ = 0 до интерполирующего 
сплайна при ρ = 1.

Переход от критерия (2) к  функционалу J(S) 
упрощает получение неизвестных коэффициен-
тов сплайна:
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Шаг дискретизации Δt уравновешивает 
размерности слагаемых, а  сам функционал (3) 
становится безразмерным. Далее Δt  =  1.

Для получения коэффициентов a a a ai i i i
0 1 2 3, , ,    

рекуррентного сплайна Si(τ) на i-м звене
	 S a a a a q h qi

i i i i( ) ,τ τ τ τ τ= + + + − ≤ ≤ −0 1 2
2

3
3  	 (4)

использованы два типа условий:
1)	условия равенства непрерывных произво-

дных для смежных звеньев сплайна S t S tk
q
i k

q
i( ) ( )( ) ( )+

−
+ −=1

1  
S t S tk

q
i k

q
i( ) ( )( ) ( )+

−
+ −=1

1  позволяют найти рекуррентные соот-
ношения для непрерывных коэффициентов a ai i

0 1,   
(k = 0, 1) смежных (i – 1)-х и i-х звеньев;

2)	из условия ∂
∂

= ∂

∂
=J S

a

J S

ai i
( ) , ( )

2 3

0 0 найдены раз-

рывные коэффициенты a ai i
2 3,  .

Математические соотношения для коэффици-
ентов Р‑сплайна a a a ai i i i

0 1 2 3, , ,    представляют собой 
алгебраические выражения [26] и не требуют до-
полнительных методов решения (аналитических 
или численных).

Отличительная особенность предлагаемого 
Р‑сплайна (4)  – это возможность сопряжения 
смежных звеньев в  любой точке q tk

i=  внутри 
i-го звена (k h= 0, ) (рис.  2а). Это особенность 
уникальна и  для теории сплайнов с  последова-
тельным сопряжением звеньев, и для реализации 
в реальном времени со скользящим окном.
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Временные моменты сопряжения сплайна q 
и вычисления τ являются параметрами вычисли-
тельных схем Р-САФ. И на основе их взаимного 
расположения можно разработать несколько то-
пологий для вычислительных схем сплайна [29], 
в  том числе последовательной рис.  2б и  мно-
гократной фильтрации рис.  2в. И  все три схе-
мы сочетают рекуррентность коэффициентов 
сплайна, что соответствует адаптации линейного 
КИХ‑фильтра в  традиционном САФ, и  локаль-
ность к группе отсчетов внутри звена.

Наибольший интерес с  позиции РРВ имеет 
универсальная вычислительная схема, показан-
ная на рис. 2а. Для произвольных значений q и τ 
разностное уравнение ЦФ, соответствующего та-
кой схеме, представляет собой уравнение с пере-
менными параметрами, порядок уравнения соот-
ветствует значению τ [30]. И именно параметры q 
и τ, как параметры топологии, определяют струк-
турную адаптацию Р-САФ.

Рассмотрим частный случай данной вычис-
лительной схемы для τ = + = −q q h1 0 1, ,  . Для 
получения разностного уравнения требуется за-
дание единого временного отсчета, определен-
ного для каждого i-го звена сплайна. Принципи-
ально таким моментом может быть любой отсчет 
i-го звена t j hj

i , , = 0 . Здесь выбран момент вре-
мени t i

τ и далее для этого момента введено обо-
значение i t i= τ.

Проанализируем компоненты функционала (3) 
относительно выбранного момента. Если введе-
ны обозначения y y t S S ti

i
i

i= =( ), ( )τ τ , то последо-
вательности { }, { }, , , ...S y ii i  = 1 2 3  можно рассма-
тривать, как решетчатые функции с интервалом 
квантования Δt. И для введенных обозначений 
разностное уравнение Р-САФ имеет следую-
щий вид:

(а)
(і–1)-е звено

i-е звено

Отсчеты ВР

Значения  
сплайна

Момент сопряжения

(б)

(і–1)-е звено
i-е звено

(в)

(і–1)-е звено
i-е звено

Рис. 2. Топология вычислительных схем Р-САФ.
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Разностное уравнение (5) – наиболее простой 
случай разностного уравнения для Р-САФ и со-
ответствует значениям τ = + =q q1 0,  . Это урав-
нение первого порядка с постоянными коэффи-
циентами γ j j, , = 0 4. Если τ > +q 1 и  для всех 
звеньев сплайна τ = const, то разностное уравне-
ние остается с постоянными параметрами, но по-
рядок уравнения равен (τ – h). В  данном случае 
коэффициенты γ j j, , = 0 4 разностного уравне-
ния (5) не зависят от параметров вычислительной 
схемы q и τ, а зависят только от параметров само-
го сплайна h и  τ. Эти параметры и  определяют 
адаптивные свойства Р-САФ, т. е. участвуют 
в процессе параметрической адаптации.

3. УСТОЙЧИВОСТЬ И ПЕРЕХОДНЫЕ 
ПРОЦЕССЫ P-САФ

Концепция САФ оказалась довольно попу-
лярной и  это можно объяснить способностью 
цифровых фильтров моделировать нелинейные 
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системы при невысокой сложности самих САФ. 
Однако скорость сходимости САФ остается 
по-прежнему недостаточно высокой [31].

Рекуррентный Р-САФ как математический 
инструмент обработки информации в  РРВ дол-
жен соответствовать требованиям сходимости, 
устойчивости и точности [32]. Для оценки эффек-
тивности P-САФ в установившихся и переходных 
режимах целесообразно использовать методы ли-
нейных динамических систем. Как и в случае лю-
бого ЦФ для описания P-САФ используется ма-
тематический аппарат, включающий аппаратную 
и системную функции фильтра.

В отличие от КИХ‑фильтров, обладающих ли-
нейной фазой и  устойчивостью, БИХ‑фильтры 
могут оказаться неустойчивыми. Поэтому в обя-
зательном порядке следует анализировать устой-
чивость рекуррентного сплайн-фильтра в  обла-
сти изменения его параметров.

На основе z-преобразования правой и  левой 
частей разностного уравнения (5) аналитически 
получена системная функция сплайн-фильтра 
W z S z Y z( ) ( ) ( )=  [31]:

	 W z
z k k

z z z

k

k

h

( )
( ) ( )

ln( )
=
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∑ 1 2
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3
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0 1
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2
1

1 1γ γ

γ γ γ
,	 (6)

которая является аналогом частотной передаточ-
ной функции (ПФ) непрерывных систем.

И  несмотря на несложный вид системной 
функции, синтез P-САФ непосредственно на его 
основе довольно проблематичен. Альтернатив-
ным способом синтеза Р-САФ является пред-
ставление ПФ в  виде соединения элементарных 
звеньев САУ с  прямыми, параллельными или 
каскадными связями [33]. Для этого представим 
системную функцию (6) в традиционном виде от-
ношения полиномов:
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Тогда структурная схема прямой реализации 
Р-САФ будет выглядеть следующим образом 
(рис. 3).

Обратная связь в  структуре Р-САФ, являясь 
достоинством рекурсивных ЦФ, может привести 
к  его неустойчивости, т.  е. наличию корней ха-
рактеристического уравнения за пределами еди-

ничного круга z < 1 . Для оценки областей устой-
чивости запишем характеристический полином 
ПФ (6) с учетом билинейного w-преобразования. 

И, заменив z
w
w

= +
−

1
1

, получим

	 u w u w u0
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Для уравнения второго порядка (8) критерий 
Гурвица–Мизеса определяет условия устойчиво-
сти дискретных систем:
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С учетом введенных в (5) обозначений для ко-
эффициентов γ j j, , = 0 2 разностного уравнения 
устойчивость Р-САФ полностью определяется 
параметрами сплайна h и τ. И для выбранной то-
пологии вычислительной схемы q = 0, τ = 1 Р-САФ 
устойчив при любых значениях сглаживающего 
параметра ρ ∈[ , ]0 1  при любом размере группы h.

На рис. 4 области неустойчивости не заштри-
хованы, области абсолютной устойчивости (т.  е. 
при всех значениях ρ ∈[ , ]0 1 ) заштрихованы пол-
ностью, а  на областях частичной устойчивости 
приведена нижняя граница диапазона ρ при не-
которых соотношениях h и q. Изменение параме-
тра топологии q > 0 заметно сужает области устой-
чивости Р-САФ. Устойчивость наблюдается 
только при стремлении ρ → 1, и сами диапазоны ρ 
весьма малы: [0.99–1], [0.84–1]. И  наконец при 
q → h Р-САФ всегда неустойчив.

yi Si

β0Z
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β1Z
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β2Z
2

β3Z
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Рис. 3. Структурная схема рекуррентного P-САФ.
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При сопряжении смежных звеньев в  нача-
ле текущего звена (q = 0) Р-САФ всегда остается 
устойчив и при τ > 1. В практических приложе-
ниях сопряжении в начале звена и используется 
чаще всего.

Также целесообразно оценить сходимость 
Р-САФ на основе косвенных критериев, т. е. ис-
следовать аппаратную функцию g(t). Известно, 
что аппаратная функция ЦФ является функцией 
веса компонент фильтра во времени. И  по мере 
увеличения длины веса ЦФ резко возрастает вы-
числительная сложность процессов фильтрации 
и адаптации.

Аппаратная функция g(t) P-САФ была получе-
на аналитически на основе системной функции 
Р-САФ (6) с использованием обратного преобра-
зования Фурье.

Являясь аналогом импульсной весовой функ-
ции непрерывной системы, аппаратная функция 
выражает аналитическую зависимость сигналов 
между входными и выходными сигналами ЦФ на 
основе уравнения дискретной свертки. Визуаль-
но аппаратная функция Р-САФ несимметрична, 
что типично для БИХ‑фильтров (рис.  5а). А  за-
тухающий характер подтверждает сходимость 
Р-САФ при изменении параметров сплайна ρ и h.

Однако условие каузальности (g t t( ) ,= <0 0) 
соблюдается только в случае, если Р-САФ работает 
в режиме без задержки, т. е. не имеет запаздывания 
по параметрам топологии вычислительной схемы. 
В других случаях аппаратная функция отлична от 
нуля, что характерно для систем с запаздыванием, 
например, при обработке данных группами.

Системную ошибку ЦФ определяет ширина 
аппаратной функции Δ (рис. 5в). Количественно 
ширина аппаратной функции может быть оцене-
на следующим соотношением [34]:

	 ∆ = −∞

∞

∫ g t dt

g

( )

( )0
.	 (9)

Как видно на геометрической иллюстрации 
ширина аппаратной функции зависит от пара-
метров сплайна ρ и  h. Причем ширина умень-
шается и с ростом сглаживающего множителя ρ, 
и с ростом длины сплайна h. С увеличением чис-
ла отсчетов звена h полоса пропускания филь-
тра уменьшается. Соответственно уменьшает-
ся и  ширина аппаратной функции, что видно 
из рисунка. Гладкость сплайна на выходе филь-
тра в  таких случаях увеличивается, однако он 

q

5

4

3

2

1

0
 3 4 5 6 7 8 9 h

0.99

0.99 0.97 0.90

0.99 0.95 0.87

0.99 0.93 0.87

0.99 0.95

Рис. 4. Области устойчивости P-САФ.
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Рис. 5. Аппаратная функция P-САФ.
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становится значительно отдален от линии регрес-
сии, что приводит к  увеличению систематиче-
ской ошибки. Таким образом, ширина амплитуд-
ной функции физически интерпретируется как 
фактор, влияющий на точность измерений.

Влияние сглаживающего множителя ρ много 
слабее, чем параметра h. И при h > 15 влияние па-
раметра сглаживания практически нет.

5. РЕЗУЛЬТАТЫ ЧИСЛЕННЫХ 
ЭКСПЕРИМЕНТОВ

Для оценки эффективности предлагаемого 
P-САФ выполнена серия вычислительных экспе-
риментов с реализацией в режиме реального вре-
мени. Численные эксперименты предназначены 
для демонстрации сглаживающих и  фильтрую-
щих возможностей P-САФ, а также для сопостав-
ления результатов с другими САФ.

Результаты предложенного P-САФ, основан-
ного на штрафном сплайне реального времени, 
сравниваются с классическими вариантами САФ 
на основе SAF-LMS [9].

Для проведения исследований в качестве мо-
дельных и  реальных данных целесообразно вы-
брать широко известные функции с выраженны-
ми нелинейностями, которые часто используются 
в подобных исследованиях алгоритмов САФ.

Для оценки эффективности САФ [18] исполь-
зуется показатель точности, основанный на сред-
неквадратическом отклонении и  выраженный 
в децибелах:
	 MSE dB E e n  = 



10 10

2log ( ) ,	 (10)

где E[*] – среднее значение; e(n) – разность по-
лезного и восстановленного сигналов.

Модельные входные сигналы
Все результаты получены путем усреднения 

20  испытаний Монте-Карло. Максимальный 
объем выборки для всех модельных сигналов  – 
30 000 отсчетов.

На рис. 6 представлены результаты эффектив-
ности предлагаемого Р-САФ для двух наиболее 
популярных примеров в теории САФ. Для рис. 6а 
входной полезный сигнал xn представляет собой 
гауссовский случайный процесс и  генерируется 
соотношением [9]

	 x rx rn n n= + − ⋅−1
21 ν ,

где νn – белый гауссовский шум с нулевым сред-
ним с единичной дисперсией; r  [0, 1) – коэффи-
циент, определяющий корреляцию между сосед-
ними входными отсчетами xn.

Кроме того, ко входным данным добавляется 
независимый белый гауссов шум ξn  с различны-
ми соотношениями сигнал/шум (SNR = 10, 20, 30, 
40 dB).

Рис.  6б отражает эффективность фильтрации 
процесса, порожденного альфа-стабильным рас-
пределением, и  для α ≠ 1 имеет следующий вид 
[17, 18]:

	 f t j t t j t( ) exp ( ) tan= − +



























ρ γ β απα 1

2
sign ,

где α  (0, 2] – индекс стабильности, определяю-
щий выраженность импульса; –1 ≤ β ≤ 1 – индекс 
симметрии; ρ – параметр положения; γ > 0 – па-
раметр дисперсии. Очевидно, что при α = 2 имеет 
место гуссовский сигнал. И  по аналогии для 
остальных значений α   (0, 2] сигнал называют 
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Рис. 6. Эффективность алгоритма P-САФ в условиях гауссовского случайного процесса.
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негауссовским. В  эксперименте данный сигнал 
является полезным и  для него заданы значения 
параметров α = 1.6, β = 0, ρ = 0, γ = 0.05. Аддитив-
ная помеха – белый гауссов шум ξn  с различны-
ми соотношениями сигнал/шум (SNR = 10, 20, 30, 
40 dB).

Кривые MSE  [dB] позволяют оценить общую 
эффективность (MSE  [dB] приближение к  уста-
новившемуся значению MSE) и скорость сходи-
мости алгоритмов.

Рис.  6б демонстрирует хорошую эффектив-
ность P-САФ в  условиях негауссовского вход-
ного сигнала. Графики MSE  [dB] подтверждают 
сходимость алгоритма к значению установившей-
ся ошибки при различных соотношениях сиг-
нал/шум. И  в  установившемся режиме графики 
MSE [dB] асимптотически стремятся к значению 
мощности шума [9]. При заданных уровнях сиг-
нал/шум (SNR  = 10, 20, 30, 40 dB) они теоретиче-
ски равны (–10, –20, –30, –40 dB) соответственно.

Однако в  случае гауссовского полезного сиг-
нала (рис. 6а) графики MSE [dB] довольно далеки 
от теоретических значений поэтому и  алгоритм 
P-САФ имеет значительную установившуюся 
ошибку. Для сравнения на рис.  6а пунктирной 
линией приведена кривая MSE [dB] для классиче-
ского САФ [13] при SNR = 30 dB. Установившаяся 
ошибка согласуется с мощностью сигнала, но при 
довольно большом числе отсчетов n > 2000 (рис. 5 
в [13]).

Следующим модельным сигналом, часто ис-
пользуемым при анализе ВР является Доплеров-
ская функция, определенная на интервале [0, 1]:

	 f t t t
t

( ) ( ) sin ( , )
,

= − +
+







5 1 2 1 0 05
0 05

π .

Аддитивная помеха в  данном случае также 
представлена белым гауссовским шумом ξn  с раз-

личными соотношениями сигнал/шум (SNR = 10, 
20, 30, 40 dB). На графике (рис. 7а) показан полез-
ный сигнал (серая линия), смесь сигнала и шума 
(черные точки) и  результат обработки алгорит-
мом P-САФ (синяя линия) на интервале [0, 1] при 
SNR = 10 dB для 1000 отсчетов ВР. Параметры ал-
горитма P-САФ приведены на рисунке. В зуми-
рованной области представлен результат работы 
алгоритма (красная линия) на интервале [0, 0.3] 
при значениях параметров P-САФ h = 3, ρ = 0.5. 
Для подобных сигналов со значительным изме-
нением и  частоты, и  амплитуды параметры 
P-САФ оказывают существенное влияние на эф-
фективность его работы. На графике (рис.  7б) 
отображены кривые MSE [dB] для разных значе-
ний соотношения сигнал/шум при h = 3, ρ = 0.5. 
Сходимость алгоритма подтверждается прибли-
жением графиков MSE  [dB] к  установившемуся 
значению. Причем скорость сходимости для сла-
бого шума с  SNR = 40 dB на порядок ниже, чем 
с низким значением SNR = 10 dB.

Реальные временные ряды
В  качестве входных данных использованы 

два реальных набора данных из репозитория 
DaISy [11]. Эта БД содержит большое количество 
реальных статистических данных из разных от-
раслей: механические системы, биомедицинские, 
промышленные процессы, экологические и др.

Набор данных № 96-008 “Данные о  флаттере 
крыла” содержит 1024 значения. На рис.  8а се-
рым цветом показана информативная часть ВР – 
512  значений. Флаттер крыла  – это колебания 
крыла самолета во время полета. Характеризуется 
флаттер высокочастотными колебаниями и вли-
яет на безопасность полета. На рисунке красной 
линией отображена работа алгоритма P-САФ 
при параметрах алгоритма h = 3, ρ = 0.8. При об-
работке подобных высокочастотных сигналов 
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Рис. 7. Эффективность алгоритма P-САФ для Доплеровской функции.
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существенную роль имеют параметры настрой-
ки P-САФ. Влияние параметров сплайна взаим-
ное и  сочетанное. В  предложенном алгоритме 
P-САФ параметр ρ в большей степени определяет 
амплитуду восстановленного сигнала, в то время 
как параметр h влияет на частоту. При значении 
h = 3 наблюдается полное совпадение сигналов 
по частоте во всем временном диапазоне: синяя 
линия в диапазоне отсчетов [60÷160], зеленая – 
[250÷350]. Кроме того, на рис. 8б отображено 
влияние размера группы отсчетов h на точность 
восстановления сигнала. Очевидно, что точность 
повышается при уменьшении параметра h.

Еще один набор данных из репозитория DaISy 
№ 96-004 “Данные шаровой установки SISTA (си-
стема оценки информационной безопасности)” 
содержит 1000 значений ВР. На рис.  9а исход-
ный набор данных показан серой линией, а  ре-
зультат работы алгоритма  – зеленой. Расширяя 
исследования [11], ВР здесь был дополнительно 
исследован в условиях аддитивной помехи в виде 
белого гауссовского шума с различными соотно-
шениями сигнал/шум (SNR  = 10, 20, 30, 40 dB). 

Рис. 9б показывает хорошую сходимость алгорит-
ма P-САФ для всех заданных соотношений сиг-
нал/шум.

При отсутствии шума значение погрешности 
MSE [dB] варьируется в диапазоне (–55, –60) dB 
при различных соотношениях параметров h и ρ. 
И эти значения можно рассматривать как систе-
матическую погрешность предложенного алго-
ритма P-САФ для заданного ВР.

6. ЗАКЛЮЧЕНИЕ
БИХ‑фильтры привлекают внимание иссле-

дователей благодаря широкому спектру при-
кладных задач при обработке данных в реальном 
времени. Особую актуальность БИХ‑фильтры на 
базе сплайнов приобрели, как инструмент нели-
нейной обработки, известный, как САФ.

Предложенный в  работе P-САФ на основе 
рекуррентного P‑сплайна по аналогии с класси-
ческим САФ M.  Scarpiniti [9] состоит из линей-
ной динамической и  нелинейной статической 
компонент. Для адаптации P-САФ разработаны 
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Рис. 9. Эффективность алгоритма P-САФ для набора данных № 96-004 DaISy.

0

–5

–10

–15
500 1000

3
2
1
0

–1
–2
–3

0 100 200 300 400 500

(а) (б)

h = 3
ρ = 0.8

h = 15

h = 8

h = 3

n

M
SE

 [d
B]

Рис. 8. Эффективность алгоритма P-САФ для набора данных № 96-008 DaISy.



ПРОГРАММИРОВАНИЕ       № 6       2024

	 АДАПТИВНЫЙ БИХ‑ФИЛЬТР НА БАЗЕ ШТРАФНОГО СПЛАЙНА	 33

вычислительные схемы с различной топологией, 
что одновременно определяет способ адаптации 
узлов и  вычисления коэффициентов сплайна. 
Это повышает эффективность P-САФ по сравне-
нию с классическим САФ и сокращает вычисли-
тельные затраты.

Был проведен анализ частотных и временных 
характеристик рекурсивного P-САФ, а также из-
учены условия его сходимости. Установлено, что 
при изменении параметров P-САФ остается низ-
кочастотным.

Сравнительный анализ предложенного P-САФ 
c другими САФ выполнен с  использованием 
модельных и  реальных данных из репозитария 
DAISY. Значения показателя MSE [dB] для P-САФ 
оказались на уровне и выше классического САФ 
в  случае высокочастотных детерминированных 
или реальных сигналов. В  этом и  проявляется 
преимущество P-САФ: короткая рекурсивная 
часть и наличие аналитической модели.
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The purpose of this research is to develop the technique of spline adaptive filters (SAF) for real-time im-
plementation. The P-SAF proposed in the article based on the recurrent penalty P‑spline, by analogy with 
the classical SAF, consists of linear dynamic and nonlinear static components. To adapt P-SAF, computing 
circuits with different topologies have been developed. This approach specifies a way to adapt the knots and 
calculate the spline coefficients simultaneously. This made it possible to increase the efficiency of P-SAF 
compared to the classical SAF and reduce computational costs. The efficiency indicator MSE [dB] for P-SAF 
is equal to and higher than for classical SAF when analyzing model and real time series.
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