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В силу юридических ограничений либо ограничений, связанных с внутренней информационной 
политикой компаний, зачастую бизнес не доверяет конфиденциальную информацию публичным 
облачным провайдерам. Одним из механизмов, позволяющих обеспечить безопасность конфиден-
циальных данных в облаках, является гомоморфное шифрование. Для проектирования решений, 
использующих нейронные сети, в данных условиях используются нейронные сети, сохраняющие 
конфиденциальность. Они эксплуатируют механизм гомоморфного шифрования, позволяя таким 
образом обеспечить безопасность коммерческой информации в облаке. Основным сдерживающим 
фактором использования нейронных сетей, сохраняющих конфиденциальность, является большая 
вычислительная и пространственная сложность алгоритма скалярного умножения, который явля-
ется базовым для вычисления математической свертки. В работе предлагается алгоритм скалярного 
умножения, который позволяет уменьшить пространственную сложность c квадратичной до линей-
ной, а также уменьшить время вычисления скалярного умножения в 1.38 раза.
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1. ВВЕДЕНИЕ
Методы искусственного интеллекта (ИИ) [1] 

набирают все большую популярность в  послед-
ние годы. Если в  2000-х гг. ИИ зачастую инте-
ресовались только исследовательские круги, то 
в последние десятилетия ИИ набирает популяр-
ность во всех областях человеческой деятельно-
сти. Если проанализировать научно-технические 
достижения, то можно отметить следующее. На 
рост популярности методов ИИ в большей степе-
ни повлияло развитие децентрализованных вы-
числительных архитектур, в том числе облачных 
вычислений, аппаратных ускорителей, а  также 
общая тенденция увеличения вычислительной 
мощности устройств. Методы ИИ сегодня при-
меняются в производстве для повышения эффек-

тивности автоматизации, в  медицине и  финан-
совых структурах для анализа больших данных 
и т. д. С ростом популярности языковых моделей 
и запуском GPT с открытым исходным кодом ме-
тоды ИИ охватили еще большее количество сфер 
человеческой деятельности [2].

Однако, как и в конце ХХ в., когда появился 
Интернет/Всемирная паутина, методы ИИ стали 
предметом различных дискуссий [3], как с точки 
зрения закона и  законотворчества, так и  с  точ-
ки зрения безопасности данных. Задачи, решае-
мые ИИ, как правило, сопряжены с обработкой 
больших объемов данных, а  в  случае с  теми же 
языковыми моделями – очень больших объемов 
данных. Большие данные [4] могут содержать 
информацию с  ограниченным доступом, на-
пример, если ИИ используется компаниями для 
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обработки данных пользователей, в медицинской 
организации  – персональные данные пациен-
тов, муниципальной/государственной  – данные 
граждан, внутренние документы, в  финансовых 
организациях  – данные клиентов, информация 
о счетах, биржевые котировки и т. д. Все вышепе-
речисленные данные зачастую являются конфи-
денциальными и охраняются законом, например, 
в Российской Федерации это Федеральный закон 
от  27  июля 2006 г. № 152-ФЗ “О  персональных 
данных”, который направлен на усиление кон-
троля за обработкой и распространением личной 
информации граждан [5]. Если методы ИИ ис-
пользуются внутри закрытой сети, вопросы безо-
пасности можно решить стандартными методами, 
но создание и поддержка высокопроизводитель-
ной закрытой сети требует больших вычисли-
тельных ресурсов и  финансирования. Поэтому 
зачастую эффективнее обратиться к поставщику 
услуг облачных вычислений, что и  делает боль-
шинство компаний. При аренде вычислительных 
мощностей сеть становится общедоступной, что 
создает риск компрометации конфиденциальных 
данных. Хотя поставщики облачных услуг гаран-
тируют безопасность данных, хранящихся в  об-
лаке, гарантировать безопасность вычислений 
на данный момент практически невозможно, по-
скольку можно хранить данные в  зашифрован-
ном виде, но не обрабатывать.

Таким образом, возникает проблема обра-
ботки конфиденциальных данных ИИ в публич-
ных сетях. В качестве решения проблемы можно 
рассмотреть такой криптографический прими-
тив, как полностью гомоморфное шифрование 
(ПГШ) [6], он позволяет выполнять гомомор-
фные операции сложения и  умножения над за-
шифрованными данными. Этого достаточно, на-
пример, для работы нейронных сетей (НС) [7], 
когда нам нужно обрабатывать входные данные 
с помощью уже обученных нейронов. В этой об-
ласти также существуют нерешенные проблемы, 
например, с  аппроксимацией некоторых функ-
ций активации. Кроме того, хотя для матриц опе-
рации можно реализовать на основе сложения 
и умножения (вычитание реализуется как сложе-
ние положительных и отрицательных чисел), из-
за особенностей схем ПГШ возникает большая 
избыточность данных, что приводит к неэффек-
тивной работе конфиденциальных НС. Цель дан-
ной работы – исследовать матричное умножение 
в контексте гомоморфного шифрования для по-
вышения эффективности использования памяти, 
разработать новый алгоритм и протестировать его 
эффективность для конфиденциальных НС.

Работа организована следующим образом: 
в  разделе 2 рассматриваются конфиденциаль-
ные НС и  методы их организации, в  разделе 3 
представлено исследование конфиденциального 
умножения матриц, в  разделе 4 анализируются 
полученные результаты на основе эксперимен-
тального исследования, в  разделе 5 подводятся 
итоги проделанной работы и описываются буду-
щие работы.

2. НЕЙРОННЫЕ СЕТИ, СОХРАНЯЮЩИЕ 
КОНФИДЕНЦИАЛЬНОСТЬ

2.1. Искусственная нейронная сеть
Математическая модель искусственных ней-

ронных сетей представляет собой линейную ком-
позицию взаимосвязанных нейронов с нелиней-
ными функциями активации (рис. 1).

Входной слой обрабатывает входные данные, 
скрытый слой выполняет вычисления, а  выход-
ной слой отвечает за выходную информацию. 
Искусственная НС, как и  биологическая НС, 
работает посредством активации нейронов, т. е., 
когда значение внутри нейрона достигает функ-
ции активации, следующему нейрону передаются 
ее значение. Каждый нейрон имеет свое базовое 
значение (вес). Тогда состояние нейрона S можно 
описать как

	 S x w
i

n

i i=
=
∑

0
,

где xi – значение i-го входа нейрона; wi – вес i-го 
входа; n – количество входов нейрона. Передача 
значений следующему нейрону осуществляется 
посредством функции активации:
	 Y = f (S ),
где f (S ) – функция активации. Например, сигмои-
дальная функция активации [8], определяется как

Input layer Hidden layer Output layer

Рис. 1. Модель искусственной нейронной сети.
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С  математической точки зрения, НС  – это 
многопараметрическая задача нелинейной опти-
мизации, где веса нейронов скрытого слоя пред-
ставляют собой параметры, а нейроны выходного 
слоя – ограничения. Чтобы нейронная сеть рабо-
тала правильно, ее нужно обучить. Обучение про-
исходит путем изменения внутренних значений 
весов нейронов. Существует несколько способов 
обучения, как с учителем, так и без него. Самый 
популярный способ обучения с  учителем  – ми-
нимизация ошибок. На основе этого типа обуче-
ния строятся сети с обратным распространением, 
которые используются для поиска закономерно-
стей, прогнозирования и  качественного анали-
за. Анализируя рис. 1, можно заметить, что если 
ввести операцию умножения матриц, то мож-
но повысить эффективность обработки данных, 
как это и делается в большинстве случаев. Чтобы 
строить НС, сохраняющие конфиденциальность, 
необходимо ввести понятие криптографического 
примитива ПГШ.

2.2. Полностью гомоморфное шифрование 
и схема CKKS

Полностью гомоморфное шифрование 
(ПГШ)  – криптографический примитив, раз-
вивающий идеи гомоморфного шифрования 
(ГШ). ГШ позволяет выполнять гомоморфное 
сложение или гомоморфное умножение над за-
шифрованным текстом. Примерами ГШ явля-
ются асимметричные шифры, такие как RSA [9], 
ElGamal [10] и др. Криптографы еще в 1980-х гг. 
предполагали, что полностью гомоморфное 
шифрование, когда шифр позволяет выполнять 
и  гомоморфное сложение, и  гомоморфное ум-
ножение, возможно. Первая схема ПГШ была 
представлена Джентри в  его работе 2009  г. [6]. 
Однако эта схема не была эффективной и обра-
батывала двоичные биты с помощью логических 
операций довольно долго (по  сравнению с  со-
временными схемами), кроме того, схема име-
ла большие ограничения на количество допу-
стимых операций (количество операций, после 
которых сообщение может быть восстановлено). 
За следующие 15 лет сам Джентри [11–13] и его 
последователи [14–17] разработали новые схемы 
ПГШ, которые работают с целыми числами, вы-
полняются быстрее и ослабляют ограничения на 
вид и количество операций.

Следующим шагом в истории ПГШ стала схе-
ма CKKS (первоначально HEaaN), которая по-
зволяет обрабатывать рациональные числа [18]. 

CKKS  – это система гомоморфного шифрова-
ния, предназначенная для эффективного выпол-
нения приближенных арифметических операций 
над зашифрованными данными. Она идеально 
подходит для вычислений с вещественными или 
комплексными числами над полем C N/2. Про-
странство открытых текстов и  пространство 
шифротекстов имеют одну и ту же область

	 Z X XQ
N  ( )+ 1 ,

где N – чаще всего степень двойки.

Пакетное кодирование C Z X X
N

Q
N2 1↔   +( ) 

отображает массив комплексных чисел в много
член со свойством: decode encode m encode m m m1 2 1 2( )⊗ ( )( ) ≈ 

decode encode m encode m m m1 2 1 2( )⊗ ( )( ) ≈  , где ⊗ – покомпонентное умножение, 
а  – негациклическая свертка.

Схема CKKS работает по стандарту [19], кото-
рый содержит рекомендуемые параметры для 
128-битных ключей ГШ троичной формы 
s u

N
∈ −{ }1 0 1, , . Шифрование в CKKS осуществля-

ется путем вычисления полиномов Лагранжа 
в поле комплексных чисел.

Схема использует приближенную арифметику 
для построения шифротекстов. Рассмотрим за-
данную арифметику. В начале мы фиксируем ос-
нование p >  0 и  модуль q0, причем q  =  p q0 при 
0 < l ≤ L. Целое число p будет использоваться в ка-
честве основы для масштабирования в приблизи-
тельных расчетах. В качестве параметра безопас-
ности λ выбирается такой параметр, что 
M M qL= ( )λ,  для полиномиального кольца. При 
границах  < l ≤ L уровня шифротекста l определя-
ется вектор в  ℛ𝓀

𝓆ℓ для фиксированного целого 
числа k.
1.	 Генерация ключей: процесс шифрования на-

чинается с генерации ключей: открытого клю-
ча pk и  закрытого ключа sk. Закрытый ключ 
используется для дешифровки данных, а  от-
крытый – для их шифрования.

2.	 Шифрование: чтобы зашифровать вектор от-
крытого текста x, выполняются следующие 
действия:
•	 Дополнение: вектор m(x) дополнен нуля-

ми, длина вектора равна заданной степени 
двойки N;

•	 Кодирование: вектор открытого текста x 
кодируется в  полином открытого текста 
m(x), который является полиномиальным 
представлением сообщения;

•	 Гомоморфное шифрование: полином m(x) 
шифруется с  помощью pk для получения 
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полинома c(x) шифротекста, при этом кон-
тролируется уровень шума шифротекста – 
количество специально вносимых ошибок 
e, удовлетворяющее | |e ecan

Max∞ ≤ , для выра-
жения c sk m e mod qMax L, = + ( )� .

3.	 Десшифрование: для дешифровки полинома 
c(x) шифротекста выполняются следующие 
действия:
•	 Гомоморфное дешифрование: полином c(x) 

дешифруется с помощью секретного ключа 
для получения полинома m x c sk modql( ) ← ( ), �  
в пространстве открытых текстов;

•	 Декодирование: для получения исходного 
текстового вектора x текстовый полином 
m(x) снова преобразуется из полинома в по-
лином сообщений.

4.	 Гомоморфные операции: CKKS поддержива-
ет несколько приближенных арифметических 
операций над зашифрованными данными, 
включая сложение и  умножение. Гомоморф-
ное сложение и умножение можно выполнять 
в  пространстве шифротекстов без необходи-
мости их дешифровки:
•	 Гомоморфное сложение: при получении 

двух шифротекстов c1(x)  и c2(x), представ-
ляющих зашифрованные значения m1(x) 
и m2(x) соответственно, выполняется гомо-
морфное сложение путем сложения соот-
ветствующих коэффициентов по модулю: 
c(x) = c1(x) + c2(x), при этом ошибки e1 и e2 
также суммируются;

•	 Гомоморфное умножение: при наличии 
двух шифротекстов c1(x) и  c2(x), представ-
ляющих зашифрованные значения m1(x) 
и  m2(x) соответственно, гомоморфное ум-
ножение выполняется путем преобразова-
ния зашифрованных полиномиальных тек-
стов для последующего покомпонентного 
умножения по модулю исходного модуль-
ного текста и  обратного преобразования: 
c(x) = c1(x) + c2(x), для умножения выделя-
ются собственные границы ошибок emult ∈ ℛ 
с  e e lmult

can
multMax

∞ ( )�emultMax(l ), где emultMax(l ) заданная 
константа.

Как сложение, так и  умножение приводят 
к  увеличению ошибки аппроксимации e, схе-
ма CKKS позволяет дешифровать данные, если 
ошибка находится в определенных пределах. При 
использовании схемы CKKS важно контролиро-
вать рост ошибки, который зависит от количества 
операций и  их порядка. Учитывая особенности 
арифметики, умножение вносит большую по-

грешность. Различные программные реализации 
схемы CKKS предлагают разные способы кон-
троля уровня ошибки.

2.3. Нейронные сети, 
сохраняющие конфиденциальность

Интерес к  нейронным сетям, сохраняющим 
конфиденциальность (НССК), возник несколь-
ко лет назад. В  своем обзоре [20] авторы иссле-
дуют эту концепцию с теоретической точки зре-
ния, рассматривая основные задачи и проблемы, 
с  которыми сталкиваются исследователи при 
построении НССК на основе ПГШ. В  основе 
НССК лежит концепция Machine Learning as a 
Service (MLaaS) [21], которая схожа с концепци-
ями облачных вычислений [22–24]. В статье да-
ны определения операций ПГШ, включая про-
блемные операции. Помимо умножения матриц, 
также упоминается бутстраппинг [25], который 
используется для увеличения количества допу-
стимых операций умножения. Также описаны 
инструменты для работы с ПГШ [26–28], вклю-
чая используемые в НССК [29]. Проблема уско-
рения НССК, работающих в  ПГШ, упоминает-
ся в  статье отдельно. Эта тема также популярна 
среди исследователей, например, в  [30] изучает-
ся ускорение операции умножения матриц путем 
модификации метода Хавели [31]. Однако опе-
рации умножения, основанные на этом методе, 
по-прежнему достаточно ресурсоемки. В следую-
щем разделе подробно рассмотрена операция ум-
ножения матриц и способы повышения скорости 
обработки данных.

3. ОПЕРАЦИЯ УМНОЖЕНИЯ 
МАТРИЦ В ПРИБЛИЖЕННОЙ СХЕМЕ 

ГОМОМОРФНОГО ШИФРОВАНИЯ
Умножение матриц  – базовая операция для 

многих систем, в том числе и для НС. Рассмотрим 
ее алгоритм, основанный на умножении квадрат-
ных матриц a и b размера n × n:

	 c a bi j
k

n

i k k j, , , ,= ⋅
=

∑
1

где i j k n, , ,∈1 , c – результат умножения. В откры-
том виде этот алгоритм довольно прост. Однако 
в ПГШ его выполнение невозможно, так как мы 
не можем отдельно обратиться к элементу каж-
дого внутреннего вектора. Рассмотрим подроб-
но метод Хавели [31]. Для выполнения матрич-
ного умножения в ПГШ матрицы должны быть 
закодированы в  диагональном представлении. 
Затем для выполнения умножения необходимо 
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выполнить несколько операций вращения со 
вспомогательными матрицами. Рассмотрим 
пример.

Пусть матрица A размера m × m представлена 
в  зашифрованном виде y0, ... , ym–1, где yi  =  (A0,i, 
A1,i+1, ... , Am–1, m+1). Сначала, y j Ai j j  = +� , 1. Далее, 
кусочное произведение между вектором весов 
и матрицей w = vA, где v v v vn= …{ }−0 1 1, , ,� � �  – вход-
ной вектор, может быть вычислено как:

	
v x x x y y y

x y x y x
n n0 0 1 1 0 1 1

0 0 1 1

= …{ } …{ } =

= …
− −, , , , , ,

, , ,
� � � � � � �

� � � �



nn ny− −{ }1 1 ,

	
v x x x y y y

x y x
n n n n

n n

1 1 0 2 1 0 2

1 1 0

= …{ } …{ } =

=
− − − −

− −

, , , , , ,
,

� � � � � � �

� �



yy x yn n0 2 2, , ,� �…{ }− −

	 ...,

	
v x x x x y y y y

x y x
n n n− − −= …{ } …{ } =

=
1 1 2 1 0 1 2 1 0

1 1

, , , , , , , ,
,

� � � � � � � �

� �



22 2 1 1 0 0y x y x yn n, , , ,� � �…{ }− −

где  – покомпонентное произведение векторов.
Однако есть и другой способ, который подхо-

дит для НССК. Возникает вопрос, настолько ли 
необходим подобный уровень конфиденциаль-
ности.

Учитывая тот факт, что в  настоящее время 
невозможно обучить НС в  ПГШ за приемлемое 
время, НС обучается в открытом виде. Справед-
ливо заметить, что значения весов являются от-
крытыми и могут быть общедоступными и суще-
ствует возможность их компрометации. Тогда нет 
смысла их шифровать, и мы можем применять их 
в открытом виде. Тогда можно использовать мо-
дифицированный алгоритм, основанный на пре-
дыдущем, где входная матрица кодируется в диа-
гональном представлении, а веса представляются 
в  виде вектора. Такое умножение рассматрива-
ется как умножение матрицы на скаляр, которое 
реализуется посредством операций умножения 
и вращения. Рассмотрим пример.

Пусть матрица A размера n × n представлена 
в зашифрованном виде a0, ... , am–1, где ai = (A0,i, 
A1,i+1, ... , An–1, n+1). Сначала, a j Ai j j  = +� , 1. Следу-
ющее произведение w = vA, где v v v vn= …{ }−0 1 1, , ,� � �  – 
входной вектор, может быть вычислено как

	 v x a a an0 0 0 1 1= …{ }−, , , ,� � � �

	 v x a a an n1 1 1 0 2= …{ }− −, , , ,� � � �
	 ...,

	 v x a a a an n n− − −= …{ }1 1 1 2 1 0, , , , .� � � �

Этот метод требует m операций вращения, 
умножения и  сложения. Кроме того, вспомога-
тельные матрицы w и  v в  зашифрованном виде 
занимают много памяти, как и  промежуточные 
зашифрованные матрицы до получения резуль-
тата. Из формул видно, что, используя открытые 
значения, мы не только сокращаем количество 
операций, но и расход памяти. Для подтвержде-
ния выводов было проведено экспериментальное 
исследование (рис. 2).

Из данных, представленных на рис. 2a, 
можно сделать вывод, что предложенный ал-
горитм позволяет сократить объем памя-
ти в  среднем в  7.89  раза. Линия тренда для 
данных, представленных на рис. 2b, равна 
0.0656n2 – 0.4452n + 2.0912 с коэффициентом де-
терминации R2 = 0.9925. Таким образом, можно 
сделать вывод, что пространственная сложность 
уменьшилась с O(n4) до O(n2) для произведения 
матриц размера n × n. Учитывая, что для произ-
ведения квадратных матриц размера n × n не-
обходимо вычислить n2 скалярных умножений 
и 2n2 циклических сдвигов векторов, простран-
ственная сложность алгоритма скалярного ум-
ножения с зашифрованными данными снижает-
ся с O(n2) до O(n).

(b) Haveli/Our

(a) Memory

Рис. 2. Исследование потребления памяти предлага-
емым методом.



ПРОГРАММИРОВАНИЕ       № 6       2024

8	 ЛАПИНА и др.	

Как видно на рис. 2b, потребление памяти со-
кратилось с квадратичного закона до линейного. 
Это дает преимущество в эффективности при ра-
боте с НССК. Однако, учитывая специфику схе-
мы CKKS, необходимо проверить, не повлияли 
ли внесенные изменения на точность результа-
та. Для этого необходимо построить нейронную 
сеть и  провести исследование. Далее рассмо-
трим скорость, с  которой выполняются вычис-
ления. Стоит отметить, что на рис. 3a показана 
общая скорость выполнения операций, включая 
шифрование и дешифрование.

Анализируя рис. 3a, можно сказать, что пред-
ложенный метод выполняет умножение быстрее. 
Этот эффект достигается как за счет нового под-
хода к умножению, так и за счет того, что шиф-
рование и дешифрование упрощаются, посколь-
ку умножение выполняется на открытом векторе 
весов НССК. Кроме того, мы предлагаем проа-
нализировать соотношение скоростей методов 
(рис. 3b).

Линии тренда зависимости времени от n для 
алгоритма Хавели 0.0634n4 – 1.8561n3 + 20.897n2– 
– 88.794n + 118.56, для предложенного алгорит-
ма 0.0461n4 – 1.3405n3 + 14.955n2– 63.491n + 84.81  
с  коэффициентом детерминации для обеих 
линий равным R2  =  0.9995 (рис.  3a). Асимпто-

тически выигрыш во времени при увеличении n 
равен

	lim
. . . . .
. .n

n n n n
n→∞

− + − +
−

0 0634 1 8561 20 897 88 794 118 56
0 0461 1

4 3 2

4 33405 14 955 63 491 84 81
1 38

3 2n n n+ +
≈

≈
−. . .

. .
Время работы алгоритма для произведения 

квадратных матриц n × n уменьшилось в среднем 
в 1.49 раза (рис. 3b). С увеличением размера гра-
фик становится более линейным, что можно объ-
яснить увеличением избыточности, которая зави-
сит от длины вектора, в то время как при малых 
размерах она зависит как от конструкции векто-
ра, так и от вспомогательных матриц, необходи-
мых для вращения.

В  целом можно сказать, что предложенный 
метод эффективен как с точки зрения потребле-
ния памяти, так и  скорости вычислений. Стоит 
отметить, что этот результат достигается за счет 
снижения конфиденциальности, а  именно кон-
фиденциальности весов НССК, при условии, что 
веса являются общеизвестными при обучении 
НССК в открытом виде.

4. ИССЛЕДОВАНИЕ ТОЧНОСТИ
В рамках исследования были проведены экспе-

рименты по обучению и тестированию нейронной 
сети, а также ее зашифрованной версии на наборе 
данных MNIST. Целью эксперимента было оце-
нить производительность модели в обычном и за-
шифрованном режимах, а также изучить влияние 
гомоморфного шифрования на производитель-
ность и точность модели. Аппаратная конфигура-
ция состоит из процессора Intel(R) Xeon(R) CPU 
E5–2696 v3 с  тактовой частотой 2.30  ГГц, 32 ГБ 
оперативной памяти DDR4 с частотой 2133 МГц 
и твердотельного накопителя объемом 1 ТБ. Сред-
нее время измерялось путем запуска алгоритмов 
на платформе 10 000 раз. В ходе эксперимента со-
бирались данные о потерях при обучении и тести-
ровании, а также о точности классификации для 
каждого класса. Для этого была построена НС на 
основе следующей математической модели.

Рассмотрим сверточную нейронную сеть 
(СНС) со следующими слоями и параметрами:
•	 Входное изображение: I, одноканальное изо-

бражение.
•	 Первый сверточный слой (C1): применя-

ет 4  фильтра с  размером ядра 7 × 7 с  шагом 3 
и размером 0.

•	 Первый слой – полносвязный (F1): преобразу-
ет упрощенные карты признаков с  использо-
ванием H-нейронов.

(b) Haveli/Our

(a) Time

Рис. 3. Исследование времени вычисления операции 
умножения матриц.
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•	 Второй полносвязный слой (F2): сопоставля-
ет скрытый слой с выходным слоем с O-ней-
ронами.
Математические операции, выполняемые 

СНС, выглядят следующим образом:
1.	 Работа первого сверточного слоя может быть 

определена как
	 C I Conv d I K S P1 1 1 12( ) = ( ), , ,� ,

	 где Ki  =  7 × 7  – размер ядра, с  шагом S1  =  3 
и размером P1 = 0.

2.	 Выходной сигнал C1 проходит через функцию 
активации и, возможно, другие операции, та-
кие как объединение или нормализация, после 
чего сглаживается и поступает в первый слой 
с полным подключением.

3.	 Работа первого полносвязанного слоя может 
быть определена как

	 F X XW bF F1 1 1
( )= +�� ,

	 где X – входной вектор для F1; WF1
 и bF1

 пред-
ставляют собой веса и  смещения F1 соответ-
ственно.

4.	 Работа второго полносвязанного слоя анало-
гично определяется как

	 F Y YW bF F2 2 2
( ) = +� ,

	 где Y – входной вектор F2, полученный из вы-
хода F1; WF2

 и bF2
 – веса и смещения F2 соот-

ветственно. Эта модель описывает структуру 
СНС, подчеркивая последовательность от об-
работки на сверточном слое до генерации ко-
нечного вывода через полносвязанные слои.
СНС была выбрана в качестве модели потому, 

что ПГШ обладает свойствами как гомоморфиз-
ма, так и автоморфизма, благодаря которым вра-
щение зашифрованных матриц для реализации 
матричного умножения реализовать достаточно-
го просто. Кроме того, эти свойства позволяют 
достаточно эффективно выполнять математиче-
скую операцию свертки [32]. Далее рассмотрим 

результаты работы полученной модели. А имен-
но, данные о потерях (рис. 4).

На рис. 4 показана динамика потерь нейрон-
ной сети в процессе обучения для 10 эпох. По оси 
абсцисс откладывается номер теста, равный ко-
личеству эпох (от 1 до 10), а по оси ординат – ко-
личество потерь. На графике видно уменьшение 
потерь с каждой последующей эпохой, что свиде-
тельствует об адекватном поведении модели при 
использовании нового алгоритма обучения.

На рис.  5 показана точность классифика-
ции модели на тестовых данных для каждого из 
10 классов. По оси абсцисс представлены классы 
(от 0 до 9), а по оси ординат – процент точности 
для каждого класса. График помогает наглядно 
представить, как модель справляется с  класси-
фикацией различных категорий, выявляя классы, 
в которых модель работает лучше или хуже.

Результаты экспериментов показывают, что 
нейронная сеть демонстрирует высокую точ-
ность как в обычном, так и в зашифрованном ре-
жимах, причем в зашифрованном режиме общая 
точность несколько повышается. Это говорит 
о  том, что применение гомоморфного шифро-
вания не оказывает существенного негативно-
го влияния на способность модели к классифи-
кации. Кроме того, тот факт, что в  некоторых 
классах зашифрованная СНС показывает более 

Рис. 4. Исследование функции потерь для PPNN.
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Рис. 5. Исследование точности PPNN для различных классов.
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точные результаты, требует дополнительных ис-
следований.

5. ЗАКЛЮЧЕНИЕ
Результатом исследования по адаптации 

НССК для работы с ПГШ стали результаты, ко-
торые подчеркивают потенциал и  ограничения 
данного подхода. Исследование показывает, что, 
изменив метод умножения зашифрованных ма-
триц, можно успешно использовать НССК при 
сохранении эффективности обработки данных 
и потребления памяти.

Анализ результатов тестирования НССК по-
казал, что модель демонстрирует улучшение 
производительности с  каждой эпохой, что вид-
но по снижению потерь при тестировании. Это 
говорит о том, что НССК адекватно адаптирует-
ся к  зашифрованным данным и  эффективно их 
обрабатывает. Результаты тестирования модели 
показали высокую точность классификации как 
для каждого из классов, так и в целом, что под-
тверждает эффективность модели в задачах клас-
сификации. Интересно отметить, что зашифро-
ванная версия модели показала сопоставимую, 
а  в  некоторых случаях даже более высокую точ-
ность, что говорит о том, что применение ПГШ 
не оказывает существенного негативного вли-
яния на способность модели к  классификации. 
Тем не менее следует отметить, что использова-
ние приближенной ПГШ требует дальнейших 
исследований для оптимизации баланса между 
безопасностью, конфиденциальностью и  произ-
водительностью модели. Важно изучить влияние 
различных типов аппроксимации функции акти-
вации на точность и общую производительность 
модели, а  также разработать методы улучшения 
производительности НССК.

В  статье предложен алгоритм скалярного ум-
ножения, позволяющий уменьшить простран-
ственную сложность с  O(n2) до O(n) и  сокра-
тить время вычисления скалярного умножения 
в 1.38 раза.

Результаты данного исследования открывают 
новые перспективы для разработки безопасных 
НС, особенно в тех областях, где требуется обра-
ботка конфиденциальных данных, а  также под-
черкивают важность продолжения исследований 
в  этой области для достижения оптимального 
сочетания безопасности, конфиденциальности 
и эффективности в НССК. В будущем планиру-
ется исследовать и  разработать методы выпол-
нения других операции в НССК для повышения 
эффективности вычислений, потребления памя-
ти, точности и конфиденциальности.
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HIGH-SPEED CONVOLUTION CORE ARCHITECTURE 
FOR PRIVACY-PRESERVING NEURAL NETWORKS
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Due to legal restrictions or restrictions related to companies' internal information policies, businesses often 
do not trust sensitive information to public cloud providers. One of the mechanisms to ensure the security 
of sensitive data in clouds is homomorphic encryption. Privacy-preserving neural networks are used to de-
sign solutions that utilize neural networks under these conditions. They exploit the homomorphic encryption 
mechanism, thus enabling the security of commercial information in the cloud. The main deterrent to the use 
of privacy-preserving neural networks is the large computational and spatial complexity of the scalar multi-
plication algorithm, which is the basic algorithm for computing mathematical convolution. In this paper, we 
propose a scalar multiplication algorithm that reduces the spatial complexity from quadratic to linear, and 
reduces the computation time of scalar multiplication by a factor of 1.38.

Keywords: matrix operations; artificial neural networks; fully homomorphic encryption; CKKS; TenSEAL, 
privacy-preserving neural networks


