1D Polymeric Iodoantimonates(III) with 1-Methylpyridinium and 3-Bromo-1-methylpyridinium Cations: Structures and Properties
- Autores: Shentseva I.A.1, Usol’tsev A.N.1, Korobeinikov N.A.1,2, Adonin S.A.1,3
-
Afiliações:
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
- Novosibirsk State University
- Favorskii Institute of Chemistry, Siberian Branch, Russian Academy of Sciences
- Edição: Volume 51, Nº 1 (2025)
- Páginas: 12-19
- Seção: Articles
- URL: https://journals.rcsi.science/0132-344X/article/view/289685
- DOI: https://doi.org/10.31857/S0132344X25010023
- EDN: https://elibrary.ru/MHOIKJ
- ID: 289685
Citar
Resumo
Palavras-chave
Sobre autores
I. Shentseva
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of SciencesNovosibirsk, Russia
A. Usol’tsev
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of SciencesNovosibirsk, Russia
N. Korobeinikov
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University
Email: korobeynikov@niic.nsc.ru
Novosibirsk, Russia; Novosibirsk, Russia
S. Adonin
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences; Favorskii Institute of Chemistry, Siberian Branch, Russian Academy of SciencesNovosibirsk, Russia; Irkutsk, Russia
Bibliografia
- Sharutin V.V., Egorova I.V., Klepikov N.N. et al. // Russ. J. Inorg. Chem. 2009. V. 54. № 11. P. 1768. https://doi.org/10.1134/S0036023609110126
- Buikin P.A., Rudenko A.Y., Ilyukhin A.B. et al. // Russ. J. Coord. Chem. 2020. V. 46. № 2. P. 111. https://doi.org/10.1134/S1070328420020049
- Buikin P.A., Rudenko A.Y., Baranchikov A.E. et al. // Russ. J. Coord. Chem. 2018. V. 44. № 6. P. 373. https://doi.org/10.1134/S1070328418060015
- Chen Y., Yang Z., Guo C.X. et al. // Eur. J. Inorg. Chem. 2010. № 33. P. 5326. https://doi.org/10.1002/ejic.201000755
- Möbs J., Gerhard M., Heine J. // Dalton Trans. 2020. V. 49. № 41. P. 14397. https://doi.org/10.1039/d0dt03427d
- Hrizi C., Trigui A., Abid Y. et al. // J. Solid State Chem. 2011. V. 184. № 12. P. 3336. https://doi.org/10.1016/j.jssc.2011.10.004
- Sharutin V.V., Pakusina A.P., Sharutina O.K. et al. // Russ. J. Coord. Chem. 2004. V. 30. № 8. P. 541. https://doi.org/10.1023/B:RUCO.0000037432.61330.07
- Möbs J., Stuhrmann G., Weigend F. et al. // Chem. Eur. J. 2022. https://doi.org/10.1002/chem.202202931
- Zhao J.-Q., Shi H.-S., Zeng L.-R. et al. // Chem. Eng. J. 2022. V. 431. https://doi.org/10.1016/j.cej.2021.134336
- Feng L.-J., Zhao Y.-Y., Song R.-Y. et al. // Inorg. Chem. Commun. 2022. V. 136. https://doi.org/10.1016/j.inoche.2021.109146
- Fateev S.A., Petrov A.A., Khrustalev V.N. et al. // Chem. Mater. 2018. V. 30. № 15. P. 5237. https://doi.org/10.1021/acs.chemmater.8b01906
- Petrov A.A., Marchenko E.I., Fateev S.A. et al. // Mendeleev Commun. 2022. V. 32. № 3. P. 311. https://doi.org/10.1016/j.mencom.2022.05.006
- Fateev S.A., Stepanov N.M., Petrov A.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 7. P. 992. https://doi.org/10.1134/S0036023622070075
- Fateev S.A., Khrustalev V.N., Simonova A.V. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 7. P. 997. https://doi.org/10.1134/S0036023622070087
- Zhang Q., Wu Y., Fu H. et al. // J. Colloid Interface Sci. 2024. V. 664. № March. P. 809. https://doi.org/10.1016/j.jcis.2024.03.057
- Huang Y., Yu J., Wu Z. et al. // RSC Adv. 2024. V. 14. № 7. P. 4946. https://doi.org/10.1039/d3ra07998h
- Chen Z., Hu Y., Wang J. et al. // Chem. Mater. 2020. V. 32. № 4. P. 1517. https://doi.org/10.1021/acs.chemmater.9b04582
- Dai Y., Poidevin C., Ochoa-Hernández C. et al. // Angew. Chem. Int. Ed. 2020. V. 59. № 14. P. 5788. https://doi.org/10.1002/anie.201915034
- Wu L.Y., Mu Y.F., Guo X.X. et al. // Angew. Chem. Int. Ed. 2019. V. 58. № 28. P. 9491. https://doi.org/10.1002/anie.201904537
- Lin K., Xing J., Quan L.N. et al. // Nature. 2018. V. 562. № 7726. P. 245. https://doi.org/10.1038/s41586-018-0575-3
- Igbari F., Wang Z.K., Liao L.S. // Adv. Energy Mater. 2019. V. 9. № 12. P. 1. https://doi.org/10.1002/aenm.201803150
- Stranks S.D., Snaith H.J. // Nat. Nanotechnol. 2015. V. 10. № 5. P. 391. https://doi.org/10.1038/nnano.2015.90
- Li X., Shi J., Chen J. et al. // Materials (Basel). 2023. V. 16. № 12. https://doi.org/10.3390/ma16124490
- Lei Y., Wang S., Xing J. et al. // Inorg. Chem. 2020. V. 59. № 7. P. 4349. https://doi.org/10.1021/acs.inorgchem.9b03277
- Kojima A., Teshima K., Shirai Y. et al. // J. Am. Chem. Soc. 2009. V. 131. № 17. P. 6050. https://doi.org/10.1021/ja809598r
- Green M.A., Dunlop E.D., Hohl-Ebinger J. et al. // Prog. Photovoltaics Res. Appl. 2022. V. 30. № 7. P. 687. https://doi.org/10.1002/pip.3595
- Hu Y.Q., Hui H.Y., Lin W.Q. et al. // Inorg. Chem. 2019. V. 58. № 24. P. 16346. https://doi.org/10.1021/acs.inorgchem.9b01439
- Dennington A.J., Weller M.T. // Dalton Trans. 2018. V. 47. № 10. P. 3469. https://doi.org/10.1039/c7dt04280a
- Mastryukov M.V., Son A.G., Tekshina E.V. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 10. P. 1652. https://doi.org/10.1134/S0036023622100540
- Liu H., Zhang Z., Zuo W. et al. // Adv. Energy Mater. 2023. V. 13. № 3. https://doi.org/10.1002/aenm.202202209
- Pai N., Chatti M., Fürer S.O. et al. // Adv. Energy Mater. 2022. V. 12. № 32. P. 2201482. https://doi.org/10.1002/aenm.202201482
- Adonin S.A., Sokolov M.N., Fedin V.P. // Coord. Chem. Rev. 2016. V. 312. P. 1. https://doi.org/10.1016/J.CCR.2015.10.010
- Wu L.-M., Wu X.-T., Chen L. // Coord. Chem. Rev. 2009. V. 253. № 23–24. P. 2787. https://doi.org/10.1016/J.CCR.2009.08.003
- Desiraju G.R., Shing Ho P., Kloo L. et al. // Pure Appl. Chem. 2013. V. 85. № 8. P. 1711. https://doi.org/10.1351/PAC-REC-12-05-10
- Suslonov V.V., Soldatova N.S., Ivanov D.M. et al. // Cryst. Growth Des. 2021. V. 21. № 9. P. 5360. https://doi.org/10.1021/acs.cgd.1c00654
- Eliseeva A.A., Ivanov D.M., Rozhkov A.V. et al. // JACS Au. 2021. V. 1. № 3. P. 354. https://doi.org/10.1021/jacsau.1c00012
- Bokach N.A., Suslonov V.V., Eliseeva A.A. et al. // CrystEngComm. 2020. V. 22. № 24. P. 4180. https://doi.org/10.1039/c6ra90077a
- Soldatova N.S., Postnikov P.S., Suslonov V.V. et al. // Org. Chem. Front. 2020. V. 7. № 16. P. 2230. https://doi.org/10.1039/d0qo00678e
- Kubasov A.S., Avdeeva V.V. // 2024. № Ii. P. 12.
- Ball M.L., Milić J.V., Loo Y.L. // Chem. Mater. 2022. V. 34. № 6. P. 2495. https://doi.org/10.1021/acs.chemmater.1c03117
- Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053273314026370
- Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053229614024218
- Dolomanov O.V.O. V., Bourhis L.J.L.J., Gildea R.J.R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. № 2. P. 339. https://doi.org/10.1107/S0021889808042726
- Oswald I.W.H., Mozur E.M., Moseley I.P. et al. // Inorg. Chem. 2019. V. 58. № 9. P. 5818. https://doi.org/10.1021/acs.inorgchem.9b00170
- Mantina M., Chamberlin A.C., Valero R. et al. // J. Phys. Chem. A. 2009. V. 113. № 19. P. 5806. https://doi.org/10.1021/JP8111556
- Pohl S., Lotz R., Saak W. et al. // Angew. Chem. Int. Ed. English. 1989. V. 28. № 3. P. 344. https://doi.org/10.1002/anie.198903441
- Janczak J., Perpétuo G.J. // Acta Crystallogr. C. 2006. V. 62. № 7. P. M323. https://doi.org/10.1107/S010827010601910X
- Li Y., Xu Z., Liu X. et al. // Inorg. Chem. 2019. V. 58. № 9. P. 6544. https://doi.org/10.1021/acs.inorgchem.9b00718
- Sharutin V.V., Senchurin V.S., Sharutina O.K. et al. // Russ. J. Inorg. Chem. 2011. V. 56. № 10. P. 1561. https://doi.org/10.1134/S0036023611100196
- Möbs J., Stuhrmann G., Wippermann S. et al. // ChemPlusChem. 2023. V. 88. № 6. P. E202200403.
- Cavallo G., Metrangolo P., Milani R. et al. // Chem. Rev. 2016. V. 116. № 4. P. 2478. https://doi.org/10.1021/acs.chemrev.5b00484
- Bhattacharyya D., Chaudhuri S., Pal A. // Vacuum. 1992. V. 43. № 4. P. 313. https://doi.org/10.1016/0042-207X(92)90163-Q
- Mousdis G.A., Ganotopoulos N.M., Barkaoui H. et al. // Eur. J. Inorg. Chem. 2017. V. 2017. № 28. P. 3401. https://doi.org/10.1002/ejic.201700277
Arquivos suplementares
